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Part I
Groups
§0 Review of IA Groups

This section contains material covered by IA Groups.

§0.1 Definitions

A group is a pair (G, ·) where G is a set and · : G × G → G is a binary operation on G,
satisfying

• a · (b · c) = (a · b) · c;

• there exists e ∈ G such that for all g ∈ G, we have g · e = e · g = g; and

• for all g ∈ G, there exists an inverse h ∈ G such that g · h = h · g = e.

Remark 1. 1. Sometimes, such as in IA Groups, a closure axiom is also specified.
However, this is implicit in the type definition of ·. In practice, this must normally
be checked explicitly.

2. Additive and multiplicative notation will be used interchangeably. For additive
notation, the inverse of g is denoted−g, and formultiplicative notation, the inverse
is instead denoted g−1. The identity element is sometimes denoted 0 in additive
notation and 1 in multiplicative notation.

A subsetH ⊆ G is a subgroup ofG, writtenH ≤ G, if h·h′ ∈ H for all h, h′ ∈ H , and (H, ·)
is a group. The closure axiommust be checked, since we are restricting the definition of
· to a smaller set.

Remark 2. A non-empty subset H ⊆ G is a subgroup of G if and only if

a, b ∈ H =⇒ a · b−1 ∈ H

An abelian group is a group such that a·b = b·a for all a, b in the group. The direct product
of two groupsG,H , writtenG×H , is the group over the Cartesian productG×H with
operation · defined such that (g1, h1) · (g2, h2) = (g1 ·G g2, h1 ·H h2).
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§0.2 Cosets

Let H ≤ G. Then, the left cosets of H in G are the sets gH for all g ∈ G. The set of
left cosets partitions G. Each coset has the same cardinality as H . Lagrange’s theorem
states that if G is a finite group and H ≤ G, we have |G| = |H| · [G : H], where [G : H]
is the number of left cosets of H in G. [G : H] is known as the index of H in G. We
can construct Lagrange’s theorem analogously using right cosets. Hence, the index of a
subgroup is independent of the choice of whether to use left or right cosets; the number
of left cosets is equal to the number of right cosets.

§0.3 Order

Let g ∈ G. If there exists n ≥ 1 such that gn = 1, then the least such n is the order of g. If
no such n exists, we say that g has infinite order. If g has order d, then:

1. gn = 1 =⇒ d | n;

2. 〈g〉 =
{

1, g, . . . , gd−1
}

≤ G, and by Lagrange’s theorem (if G is finite) d | |G|.

§0.4 Normality and quotients

AsubgroupH ≤ G is normal, writtenH ⊴ G, if g−1Hg = H for all g ∈ G. In otherwords,
H is preserved under conjugation over G. If H ⊴ G, then the set G⧸H of left cosets of
H in G forms the quotient group. The group action is defined by g1H · g2H = (g1 · g2)H .
This can be shown to be well-defined.

§0.5 Homomorphisms

Let G,H be groups. A function φ : G → H is a group homomorphism if φ(g1 ·G g2) =
φ(g1)·Hφ(g2) for all g1, g2 ∈ G. The kernel ofφ is defined to be kerφ = {g ∈ G : φ(g) = 1},
and the image of φ is Imφ = {φ(g) : g ∈ G}. The kernel is a normal subgroup of G, and
the image is a subgroup of H .

§0.6 Isomorphisms

An isomorphism is a homomorphism that is bijective. This yields an inverse function,
which is of course also an isomorphism. If φ : G → H is an isomorphism, we say that
G and H are isomorphic, written G ∼= H . Isomorphism is an equivalence relation.
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Theorem 0.1 (First Isomorphism Theorem)
If φ : G → H , then G⧸kerφ ∼= Imφ;

Theorem 0.2 (Second Isomorphism Theorem)
If H ≤ G andK ⊴ G, then H ∩K ⊴ H and H⧸H ∩K

∼= HK⧸K

Proof. Let h1k1, h2k2 ∈ HK (so h1, h2 ∈ H , k1, k2 ∈ K). h1k1(h2k2)−1 =
h1h

−1
2

∈H

h2k1k
−1
2 h−1

2
∈K

∈ HK. Thus HK ⊂ G (by a previous Remark)

Let φ : H → G⧸K,h 7→ hK. This is the composite of H → G and the quotient
map G → G⧸K, hence φ a group homomorphism. kerφ = {h ∈ H : hK = K} =
H ∩K ⊴ H and Imφ = {hK : h ∈ H} = HK⧸K.

First isomorphism theorem impliesH⧸H ∩K
∼= HK⧸K.

Remark 3. Suppose K ⊴ G. There is a bijection between subgroups of G⧸K and sub-
groups of G containing K. This also restricts to a bijection between normal subgroups
of G⧸K and normal subgroups of G containingK.

Theorem 0.3 (Third Isomorphism Theorem)
LetK ≤ H ≤ G be normal subgroups of G. Then G/K⧸H/K = G⧸H

Proof. Let φ : G⧸K → G⧸H, gK 7→ gH . If g1K = g2K, then g−1
2 g1 ∈ K ⊂ H =⇒

g1H = g2H . Thus φwell-defined.

φ is a surjective group homomorphism with kernel H⧸K.
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§1 Simple groups

§1.1 Introduction

If K ⊴ G, then studying the groups K and G⧸K give information about G itself. This
approach is available only if G has nontrivial normal subgroups. It therefore makes
sense to study groups with no normal subgroups, since they cannot be decomposed
into simpler structures in this way.

Definition 1.1 (Simple Group)
A group G is simple if {1} and G are its only normal subgroups.

By convention, we do not consider the trivial group to be a simple group. This is ana-
logous to the fact that we do not consider one to be a prime.

Lemma 1.1
Let G be an abelian group. G is simple iff G ∼= Cp for some prime p.

Proof. CertainlyCp is simple by Lagrange’s theorem. Conversely, sinceG is abelian,
all subgroups are normal. Let 1 6= g ∈ G. Then 〈g〉 ⊴ G. Hence 〈g〉 = G by
simplicity. If G is infinite, then G ∼= Z, which is not a simple group; 2Z ◁ Z. Hence
G is finite, so G ∼= Co(g). If o(g) = mn form,n 6= 1, p, then 〈gm〉 ≤ G, contradicting
simplicity.

Lemma 1.2
If G is a finite group, then G has a composition series

1 ∼= G0 ◁ G1 ◁ · · · ◁ Gn = G

where each quotient Gi+1⧸Gi
is simple.

Remark 4. It is not the case that necessarily Gi be normal in Gi+k for k ≥ 2.

Proof. We will consider an inductive step on |G|. If |G| = 1, then trivially G = 1.
Conversely, if |G| > 1, let Gn−1 be a normal subgroup of largest possible order not
equal to |G|. Then, G⧸Gn−1 exists, and is simple by remark 3.
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§2 Group actions

§2.1 Definitions

Definition 2.1 (Symmetric Group)
Let X be a set. Then Sym(X) is the group of permutations of X ; that is, the group
of all bijections of X to itself under composition. The identity can be written id or
idX .

Definition 2.2 (Permuation Group)
A group G is a permutation group of degree n if G ≤ Sym(X) where |X| = n.

Example 2.1
The symmetric group Sn is exactly equal to Sym({1, . . . , n}), so is a permutation
group of order n. An is also a permutation group of order n, as it is a subgroup of
Sn. D2n is a permutation group of order n.

Definition 2.3 (Group Actions)
A group action of a group G on a set X is a function α : G×X → X satisfying

α(e, x) = x; α(g1 · g2, x) = α(g1, α(g2, x))

for all g1, g2 ∈ G, x ∈ X . The group action may be written ∗, defined by g ∗ x ≡
α(g, x).

Proposition 2.1
An action of a groupG on a setX is uniquely characterised by a group homomorph-
ism φ : G → Sym(X).

Proof. For all g ∈ G, we can define φg : X → X by x 7→ g ∗ x. Then, for all x ∈ X ,

φg1g2(x) = (g1g2) ∗ x = g1 ∗ (g2 ∗ x) = φg1(φg2(x))

Thus φg1g2 = φg1 ◦ φg2 . In particular, φg ◦ φg−1 = φe. We now define

φ : G → Sym(X); φ(g) = φg =⇒ φ(g)(x) = g ∗ x
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This is a homomorphism.

Conversely, any group homomorphism φ : G → Sym(X) induces a group action ∗
by g ∗ x = φ(g). This yields e ∗ x = φ(e)(x) = idx = x and (g1g2) ∗ x = φ(g1g2)x =
φ(g1)φ(g2)x = g1 ∗ (g2 ∗ x) as required.

Definition 2.4 (Permutation Representation)
The homomorphism φ : G → Sym(X) defined in the above proof is called a per-
mutation representation of G.

Definition 2.5 (Orbit, Stabiliser)
Let G act on X . Then,

1. the orbit of x ∈ X is OrbG(x) = {g ∗ x : g ∈ G} ⊆ X ;

2. the stabiliser of x ∈ X is Gx = {g ∈ G : g ∗ x = x} ≤ G.

Definition 2.6 (Transitive Group Action)
If there is only orbit, i.e. OrbG(x) = X ∀ x then the group action is transitive.

Definition 2.7 (Kernel)
The kernel of a permutation representation is ⋂x∈X Gx.

Remark 5. The kernel of the permutation representationφ is also referred to as the kernel
of the group action itself.

Definition 2.8 (Faithful Group Action)
If the kernel is trivial the action is said to be faithful.

Theorem 2.1 (Orbit-stabiliser theorem)
The orbit OrbG(x) bijects with the setG⧸Gx

of left cosets ofGx inG (which may not
be a quotient group). In particular, if G is finite, we have

|G| = |Orb(x)| · |Gx|
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Example 2.2
If G is the group of symmetries of a cube and we let X be the set of vertices in the
cube, G acts on X . Here, for all x ∈ X , |Orb(x)| = 8 and |Gx| = 6 (including
reflections), hence |G| = 48.

Remark 6. The orbits partition X .

Note thatGg∗x = gGxg
−1. Hence, if x, y lie in the same orbit, their stabilisers are conjug-

ate.

§2.2 Examples

Example 2.3
G acts on itself by left multiplication. This is known as the left regular action. The
kernel is trivial, hence the action is faithful. The action is transitive, since for all
g1, g2 ∈ G, the element g2g

−1
1 maps g1 to g2.

Theorem 2.2 (Cayley’s theorem)
Any finite group G is a permutation group of order |G|; it is isomorphic to a sub-
group of S|G|.

Example 2.4
Let H ≤ G. Then G acts on G⧸H by left multiplication, where G⧸H is the set of left
cosets ofH inG. This is known as the left coset action. This action is transitive using
the construction above for the left regular action. We have kerφ =

⋂
x∈G xHx

−1,
which is the largest normal subgroup of G contained within H .

Theorem 2.3
LetG be a non-abelian simple group, andH ≤ Gwith index n > 1. Then n ≥ 5 and
G is isomorphic to a subgroup of An.

Proof. Let G act on X = G⧸H by left multiplication. Let φ : G → Sym(X) be the
permutation representation associated to this group action.

Since G is simple, kerφ = 1 or kerφ = G. If kerφ = G, then Imφ = 1Sn , which
is a contradiction since G acts transitively on X and |X| > 1. Thus kerφ = 1, and
G ∼= Imφ ≤ Sn.
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SinceG ≤ Sn andAn ◁Sn, the second isomorphism theorem shows thatG∩An ◁G,
and

G⧸G ∩An
∼= GAn⧸An

≤ Sn⧸An
∼= C2

SinceG is simple,G∩An = 1 orG. IfG∩An = 1, thenG is isomorphic to a subgroup
ofC2, but this is false, sinceG is non-abelian. HenceG∩An = G soG ≤ An. Finally,
if n ≤ 4 we can check manually thatAn is not simple; An has no non-abelian simple
subgroups.

§2.3 Conjugation actions

Example 2.5
Let G act on G by conjugation, so g ∗ x = gxg−1. This is known as the conjugation
action.

Definition 2.9 (Conjugacy Class, Centraliser, Centre)
The orbit of the conjugation action is called the conjugacy class of a given element
x ∈ G, written cclG(x). The stabiliser of the conjugation action is the set Cx of
elements which commute with a given element x, called the centraliser of x in G.
The kernel of φ is the set Z(G) of elements which commute with all elements in x,
which is the centre of G. This is always a normal subgroup.

Remark 7. φ : G → G satisfies

φ(g)(h1h2) = gh1h2g
−1 = hh1g

−1gh2g
−1 = φ(g)(h1)φ(g)(h2)

Hence φ(g) is a group homomorphism for all g. It is also a bijection, hence φ(g) is an
isomorphism from G → G.

Definition 2.10 (Automorphism)
An isomorphism from a group to itself is known as an automorphism. We define
Aut(G) to be the set of all group automorphisms of a given group. This set is a
group. Note, Aut(G) ≤ Sym(G), and the φ : G → Sym(G) above has image in
Aut(G).

Example 2.6
Let X be the set of subgroups of G. Then G acts on X by conjugation: g ∗ H =
gHg−1. The stabiliser of a subgroup H is

{
g ∈ G : gHg−1 = H

}
= NG(H), called

the normaliser of H in G. The normaliser of H is the largest subgroup of G that
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contains H as a normal subgroup. In particular,H ◁ G if and only if NG(H) = G.
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§3 Alternating groups

§3.1 Conjugation in alternating groups

We know that elements in Sn are conjugate if and only if they have the same cycle type.
However, elements of An that are conjugate in Sn are not necessarily conjugate in An.
Let g ∈ An. Then CAn(g) = CSn(g) ∩An. There are two possible cases.

• If there exists an odd permutation that commutes with g, then 2|CAn(g)| =
|CSn(g)|. By the orbit-stabiliser theorem, |cclAn(g)| = |cclSn(g)|.

• If there is no odd permutation that commutes with g, we have |CAn(g)| = |CSn(g)|.
Similarly, 2|cclAn(g)| = |cclSn(g)|.

Example 3.1
For n = 5, the product (1 2)(3 4) commutes with (1 2), and (1 2 3) commutes with
(4 5). Both of these elements are odd. So the conjugacy classes of the above inside
S5 and A5 are the same. However, (1 2 3 4 5) does not commute with any odd
permutation. Indeed, if that were true for some h, we would have

(1 2 3 4 5) = h(1 2 3 4 5)h−1 = (h(1) h(2) h(3) h(4) h(5))

Hence hmust be a 5-cycle so h ∈ 〈g〉 ≤ A5. So |cclA5(g)| = 1
2 |cclS5(g)| = 12. We can

then show that A5 has conjugacy classes of size 1, 15, 20, 12, 12.

IfH ⊴ A5,H is a union of conjugacy classes so |H| must be a sum of the sizes of the
above conjugacy classes. By Lagrange’s theorem, |H| must divide 60. We can check
explicitly that this is not possible unless |H| = 1 or |H| = 60. Hence A5 is simple.

§3.2 Simplicity of alternating groups

Lemma 3.1
An is generated by 3-cycles.

Proof. Each σ ∈ An is a product of an even number of transpositions. It therefore
suffices to show that a product of any two transpositions can bewritten as a product
of 3-cycles. For a, b, c, d distinct,

(a b)(c d) = (a c b)(a c d); (a b)(b c) = (a b c)

13



Lemma 3.2
If n ≥ 5, all 3-cycles in An are conjugate (in An).

Proof. We claim that every 3-cycle is conjugate to (1 2 3). If (a b c) is a 3-cycle, we
have (a b c) = σ(1 2 3)σ−1 for some σ ∈ Sn. If σ ∈ An, then the proof is finished.
Otherwise, σ 7→ σ(4 5) ∈ An suffices, since (4 5) commutes with (1 2 3).

Theorem 3.1
An is simple for n ≥ 5.

Proof. Suppose 1 6= N ◁ An. To disprove normality, it suffices to show that N con-
tains a 3-cycle by the lemmas above, since the normality of N would imply N con-
tains all 3-cycles and hence all elements of An.

Let 1 6= σ ∈ N , writing σ as a product of disjoint cycles.

1. Suppose σ contains a cycle of length r ≥ 4. Without loss of generality, let
σ = (1 2 3 . . . r)τ where τ fixes 1, . . . , r. Now, let δ = (1 2 3). We have

σ−1︸︷︷︸
∈N

δ−1σδ︸ ︷︷ ︸
∈N

= (r . . . 2 1)τ−1(1 3 2)(1 2 . . . r)τ(1 2 3) = (2 3 r)

So N contains a 3-cycle.

2. Suppose σ contains two 3-cycles, which can be written without loss of gener-
ality as (1 2 3)(4 5 6)τ . Let δ = (1 2 4), and then

σ−1δ−1σδ = (1 3 2)(4 6 5)(1 4 2)(1 2 3)(4 5 6)(1 2 4) = (1 2 4 3 6)

Therefore, there exists an element ofN which contains a cycle of length 5 ≥ 4.
This reduces the problem to case (i).

3. Finally, suppose σ contains two 2-cycles, which will be written (1 2)(3 4)τ .
Then let δ = (1 2 3) and

σ−1δ−1σδ = (1 2)(3 4)(1 3 2)(1 2)(3 4)
(2 4 1)

(1 2 3) = (1 4)(2 3) = π

Let ε = (2 3 5). Then

π−1︸︷︷︸
∈N

ε−1πε︸ ︷︷ ︸
∈N

= (1 4)(2 3)(2 5 3)(1 4)(2 3)(2 3 5) = (2 5 3)

Thus N contains a 3-cycle.
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There are now three remaining cases, where σ is a transposition, a 3-cycle, or a
transposition composed with a 3-cycle. Note that the remaining cases containing
transpositions cannot be elements of An. If σ is a 3-cycle, we already know An

contains a 3-cycle, namely σ itself.
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§4 p-groups

§4.1 p-groups

Definition 4.1 (p-group)
Let p be a prime. A finite group G is a p-group if |G| = pn for n ≥ 1.

Theorem 4.1
If G is a p-group, the centre Z(G) is non-trivial.

Proof. For g ∈ G, due to the orbit-stabiliser theorem, |ccl(g)||C(g)| = pn. In particu-
lar, |ccl(g)| divides pn, and they partitionG. SinceG is a disjoint union of conjugacy
classes, modulo pwe have

|G| ≡ number of conjugacy classes of size 1 ≡ 0 =⇒ |Z(G)| ≡ 0

Hence Z(G) has order zero modulo p so it cannot be trivial. We can check this
by noting that g ∈ Z(G) ⇐⇒ x−1gx = g for all x, which is true if and only if
cclG(g) = {g}.

Corollary 4.1
The only simple p-groups are the cyclic groups of order p.

Proof. Let G be a simple p-group. Since Z(G) is a normal subgroup of G, we have
Z(G) = 1 or Z(G) = G. But Z(G) may not be trivial, so Z(G) = G. This implies G
is abelian. The only abelian simple groups are cyclic of prime order by lemma 1.1,
hence G ∼= Cp.

Corollary 4.2
Let G be a p-group of order pn. Then G has a subgroup of order pr for all r ∈
{0, . . . , n}.

Proof. Recall from lemma 1.2 that any group G has a composition series 1 = G1 ◁

· · · ◁ GN = Gwhere each quotient Gi+1⧸Gi
is simple.

Since G is a p-group, Gi+1⧸Gi
is also a p-group. Each successive quotient is an

order p group by the previous corollary, so we have a composition series of nested
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subgroups of order pr for all r ∈ {0, . . . , n}.

Lemma 4.1
Let G be a group. If G⧸Z(G) is cyclic, then G is abelian. This then implies that
Z(G) = G, so in particular G⧸Z(G) = 1.

Proof. Let gZ(G) be a generator forG⧸Z(G). Then, each coset of Z(G) inG is of the
form grZ(G) for some r ∈ Z. Thus, G = {grz : r ∈ Z, z ∈ Z(G)}. Now, we multiply
two elements of this group and find

gr1z1g
r2z2 = gr1+r2z1z2 = gr1+r2z2z1 = z2z1g

r1+r2 = gr2z2g
r1z1

So any two elements in G commute.

Corollary 4.3
Any group of order p2 is abelian.

Proof. Let G be a group of order p2. Then |Z(G)| ∈
{
1, p, p2}. The centre cannot be

trivial as proven above, since G is a p-group. If |Z(G)| = p, we have that G⧸Z(G)
is cyclic as it has order p. Applying the previous lemma, G is abelian. However,
this is a contradiction since the centre of an abelian group is the group itself. If
|Z(G)| = p2 then Z(G) = G and then G is clearly abelian.

§4.2 Sylow theorems

Theorem 4.2 (Sylow Theorems)
Let G be a finite group of order pam where p is a prime and p does not divide m.
Then:

1. The set Sylp(G) = {P ≤ G : |P | = pa} of Sylow p-subgroups is non-empty.

2. All Sylow p-subgroups are conjugate.

3. The amount of Sylow p-subgroups np =
∣∣∣Sylp(G)

∣∣∣ satisfies
np ≡ 1 mod p; np | |G| =⇒ np | m

17



Proof. 1. Let Ω be the set of all subsets of G of order pa. We can directly find

|Ω| =
(
pam

pa

)
= pam

pa
· p

am− 1
pa − 1

· · · p
am− pa + 1

1

Note that for 0 ≤ k < pa, the numbers pam− k and pa − k are divisible by the
same power of p. In particular, |Ω| is coprime to p.

LetG act on Ω by left-multiplication, so g ∗X = {gx : x ∈ X}. For anyX ∈ Ω,
the orbit-stabiliser theorem can be applied to show that

|GX ||orbG(X)| = |G| = pam

Since |Ω| is coprime to p, there must exist an orbit with size coprime to p, since
orbits partition Ω. For such an X , pa | |GX |.

Conversely, note that if g ∈ G and x ∈ X , then g ∈ (gx−1) ∗X . Hence, we can
consider

G =
⋃

g∈G

g ∗X =
⋃

Y ∈orbG(X)
Y

Thus |G| ≤ |orbG(X)| · |X|, giving |GX | = |G|
|orbG(X)| ≤ |X| = pa.

As pa | |GX | we must have |GX | = pa. In other words, the stabiliser GX is a
Sylow p-subgroup of G.

2. We will prove a stronger result for this part of the proof.

Lemma 4.2
If P is a Sylow p-subgroup and Q ≤ G is a p-subgroup, then Q ≤ gPg−1

for some g ∈ G.

Indeed, letQ act on the set of left cosets of P inG by left multiplication. By the
orbit-stabiliser theorem, each orbit has size which divides |Q| = pk for some
k. Hence each orbit has size pr for some r.

SinceG⧸P has sizem, which is coprime to p, theremust exist an orbit of size 1a.
Therefore there exists g ∈ G such that q ∗ gP = gP for all q ∈ Q. Equivalently,
g−1qg ∈ P for all q ∈ Q. This implies that Q ≤ gPg−1 as required. This then
weakens to the second part of the Sylow theorems.

3. Let G act on Sylp(G) by conjugation. Part (ii) of the Sylow theorems implies
that this action is transitive. By the orbit-stabiliser theorem, np =

∣∣∣Sylp(G)
∣∣∣ |

|G|.
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Let P ∈ Sylp(G). Then let P act on Sylp(G) by conjugation. Since P is a Sylow
p-subgroup, the orbits of this action have size dividing |P | = pa, so the size is
some power of p.
To show np ≡ 1 mod p, it suffices to show that {P} is the unique orbit of size
1, as the orbits of other sizes are multiples of p and orbits partition Sylp(G).
Suppose {Q} is another orbit of size 1, so Q is a Sylow p-subgroup which is
preserved under conjugation by P . Thus P normalises Q, so P ≤ NG(Q) and
Q ⊴ NG(Q). Notice that P and Q are both Sylow p-subgroups of NG(Q). By
(ii), P andQ are conjugate insideNG(Q). Hence gPg−1 = Q so P = g−1Qg =
Q since Q ⊴ NG(Q). Thus, |P | is the unique orbit of size 1, so np ≡ 1 mod p
as required.

aSum of the orbit sizes is m, m coprime to p.

Corollary 4.4
If np = 1, then there is only one Sylow p-subgroup, and it is normal.

Proof. Let g ∈ G and P ∈ Sylp(G). Then gPg−1 is a Sylow p-subgroup, hence
gPg−1 = P . P is normal in G.

Remark 8. WhenG acts on Sylp(G) by conjugation, the orbit is Sylp(G) and the stabiliser
is the normaliser.

Example 4.1
Let G be a group with |G| = 1000 = 23 · 53. Here, n5 ≡ 1 mod 5, and n5 | 8, hence
n5 = 1. Thus the unique Sylow 5-subgroup is normal. Hence no group of order
1000 is simple.

Example 4.2
Let G be a group with |G| = 132 = 22 · 3 · 11. n11 satisfies n11 ≡ 1 mod 11 and
n11 | 12, thus n11 ∈ {1, 12}.

Suppose G is simple.

Then n11 = 12a. The amount of Sylow 3-subgroups satisfies n3 ≡ 1 mod 3 and
n3 | 44 so n3 ∈ {1, 4, 22}. Since G is simple, n3 ∈ {4, 22}.

Suppose n3 = 4. ThenG acts on Syl3(G) by conjugation, and this generates a group
homomorphism φ : G → S4. But the kernel of this homomorphism is a normal
subgroup of G, so kerφ is trivial or G itself as G simple. If kerφ = G, then Imφ
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is trivial, contradicting Sylow’s second theorem. If kerφ = 1, then Imφ has order
132 > |S4| E.

Thus n3 = 22 and recall n11 = 12. This means thatG has 22 ·(3−1) = 44 elements of
order 3b, and furtherG has 12·(11−1) = 120 elements of order 11. However, the sum
of these two totals is more than the total of 132 elements, so this is a contradiction.
Hence G is not simple.
aIf n11 = 1 then we have a normal subgroup by the previous corollary.
bEach group in Syl3(G) intersect trivially, as if they didn’t any non trivial element in the intersection
would generate both groups as they’re all C3.
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§5 Matrix groups

§5.1 Definitions

Let F be a field, such as C or Z⧸pZ.

Definition 5.1 (General Linear Group)
Let GLn(F ) be set of n × n invertible matrices over F , which is called the general
linear group.

Definition 5.2 (Special Linear Group)
Let SLn(F ) be set of n × n matrices with determinant one over F , which is called
the special linear group.

Remark 9. SLn(F ) is the kernel of the determinant homomorphism on GLn(F ), so
SLn(F ) ◁ GLn(F ).

Definition 5.3 (Scalar Matrices)
Let Z ◁GLn(F ) denote the subgroup of scalar matrices, the group of nonzero mul-
tiples of the identity.

Remark 10. Z is the centre of GLn(F ).

Definition 5.4 (Projective General Linear Group)
The group PGLn(F ) = GLn(F )⧸Z is called the projective general linear group.

Definition 5.5 (Projective Special Linear Group)
The projective special linear group is PSLn(F ) = SLn(F )⧸Z ∩ SLn(F ).

Remark 11. By the second isomorphism theorem, PSLn(F ) is isomorphic to
Z · SLn(F )⧸Z, which is a subgroup of PGLn(F ).

Example 5.1
Consider the finite group G = GLn

(
Z⧸pZ

)
. A list of n vectors in Z⧸pZ are the

columns of a matrix A ∈ G iff the vectors are linearly independent. Hence, by con-
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sidering dimensionality of subspaces generated by each column,

|G| = (pn − 1)(pn − p)(pn − p2) · · · (pn − pn−1)
= p1+2+···+(n−1)(pn − 1)(pn−1 − 1) · · · (p− 1)

= p(
n
2)

n∏
i=1

(pi − 1)

Hence the Sylow p-subgroups have size p(
n
2). Let U be the set of upper triangular

matriceswith ones on the diagonal. This forms a Sylow p-subgroup ofG, since there
are

(n
2
)
entries in a given upper triangular matrix, and there are p choices for such

an entry.

§5.2 Möbius maps in modular arithmetic

Recall that PGL2(C) acts on C ∪ {∞} by Möbius transformations. Likewise,
PGL2

(
Z⧸pZ

)
acts on Z⧸pZ ∪ {∞} by Möbius transformations. For a matrix

A =
(
a b
c d

)
∈ GL2

(
Z⧸pZ

)
; A : z 7→ az + b

cz + d

Since the scalar matrices act trivially, we obtain an action on the projective general linear
group instead of the general linear group by quotienting out the scalar matrices.

We can represent ∞ as an integer, say, p, for the purposes of constructing a permutation
representation.

Lemma 5.1
The permutation representation PGL2

(
Z⧸pZ

)
→ Sp+1 is injective (and is an iso-

morphism if p = 2 or p = 3).

Proof. Suppose that az+b
cz+d = z for all z ∈ Z⧸pZ ∪ {∞}.

Since z = 0, we have b = 0.
Since z = ∞, we find c = 0.
Thus the matrix is diagonal.
Finally, since z = 1, a

d = 1 hence a = d.
Thus thematrix is scalar. So the permutation representation fromPGL2

(
Z⧸pZ

)
has

trivial kernel, giving injectivity as required.

If p = 2 or p = 3 we can compute the orders of relevant groups manually and show
that the permutation representation is an isomorphism.
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Lemma 5.2
Let p be an odd prime. Then

∣∣∣PSL2
(
Z⧸pZ

)∣∣∣ = (p− 1)p(p+ 1)
2

Proof. By example 5.1, ∣∣∣GL2
(
Z⧸pZ

)∣∣∣ = p(p2 − 1)(p− 1)

The homomorphism GL2
(
Z⧸pZ

)
→
(
Z⧸pZ

)×
given by the determinant is surject-

ive. Since SL2
(
Z⧸pZ

)
is the kernel of this homomorphism, we have

∣∣∣SL2
(
Z⧸pZ

)∣∣∣ =
GL2

(
Z⧸pZ

)
p− 1

= p(p− 1)(p+ 1)

Now, if
(
λ 0
0 λ

)
is an element of the special linear group, then λ2 ≡ 1 mod p. Then,

p | (λ− 1)(λ+ 1) hence λ ≡ ±1 mod p. Thus,

Z ∩ SL2
(
Z⧸pZ

)
= {±I}

and ±I are distinct since p > 2.

Hence the order of the projective special linear group is half the order of the special
linear group as required.

Example 5.2
Let G = PSL2

(
Z⧸5Z

)
. Then by the previous lemma, |G| = 60. Let G act on

Z⧸5Z ∪ {∞} by Möbius transformations. The permutation representation φ : G →
Sym({0, 1, 2, 3, 4,∞}) ∼= S6 is injective by Lemma 5.1.

Claim 5.1
Imφ ⊆ A6, i.e. ψ : G φ→ S6

sgn→ {±1} is trivial.
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Proof. Let h ∈ G, and suppose h has order 2nm for oddm and so o(hm) = 2n. If
ψ(hm) = 1, then since ψ is a group homomorphism we have ψ(h)m = 1 giving
ψ(h) 6= −1 =⇒ ψ(h) = 1.

So to show ψ is trivial, it suffices to show ψ(g) = 1 for all g ∈ G with order a
power of 2.

By Lemma 4.2, if g has order a power of 2, it is contained in a Sylow 2-subgroup.
Then it suffices to show that ψ(H) = 1 for all Sylow 2-subgroups H . But since
kerψ ◁G and all Sylow 2-subgroups are conjugate, it suffices to show ψ(H) = 1
for a single Sylow 2-subgroup H .

The Sylow 2-subgroup must have order 4. Hence consider

H = 〈
(

2 0
0 3

)
{±I},

(
0 1

−1 0

)
{±I}〉

Both of these elements square to the identity element inside the projective spe-
cial linear group. This generates a group of order 4which is necessarily a Sylow
2-subgroup. We can explicitly compute the action of H on {0, 1, 2, 3, 4,∞}.

φ

((
2 0
0 3

))
= (1 4)(2 3); φ

((
0 1

−1 0

))
= (0 ∞)(1 4)

These are products of two transpositions, hence even permutations. Thus
ψ(H) = 1, proving the claim that G ≤ A6.

We can prove that for any G ≤ A6 of order 60, we have G ∼= A5; this is a question
from the example sheets.

§5.3 Properties

The following properties will not be proven in this course.

• PSLn

(
Z⧸pZ

)
is simple for all n ≥ 2 and p prime, except where n = 2 and p = 2, 3.

Such groups are called finite groups of Lie type.

• The smallest non-abelian simple groups are A5 ∼= PSL2
(
Z⧸5Z

)
, then

PSL2
(
Z⧸7Z

)
∼= GL3

(
Z⧸2Z

)
which has order 168.
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§6 Finite abelian groups

§6.1 Products of cyclic groups

Theorem 6.1
Every finite abelian group is isomorphic to a product of cyclic groups.

The proof for this theorem will be provided later in the course. Note that the isomorph-
ism provided for by the theorem is not unique. An example of such behaviour is the
following lemma.

Lemma 6.1
Letm,n ∈ N be coprime integers. Then Cm × Cn

∼= Cmn.

Proof. Let g, h be generators of Cm and Cn. Then consider the element (g, h)k =
(gk, hk), which has order mn. Thus 〈(g, h)〉 has order mn. So every element in
Cm × Cn is expressible in this way, giving 〈(g, h)〉 = Cm × Cn.

Corollary 6.1
Let G be a finite abelian group. Then G ∼= Cn1 × · · · ×Cnk

where each ni is a power
of a prime.

Proof. If ni = p1a
1 · · · prar where the pi are distinct primes, then applying

Lemma 6.1 inductively gives Cni as a product of cyclic groups which have orders
that are powers of primes.

We can apply this to the theorem that every finite abelian group is isomorphic to a
product of cyclic groups to find the result.

Later, we will prove the following refinement of Theorem 6.1

Theorem 6.2
Let G be a finite abelian group. Then G ∼= Cd1 × · · · × Cdt where di | di+1 for all i.

Remark 12. The integers n1, . . . , nk in Corollary 6.1 are unique up to ordering. The in-
tegers d1, . . . , dt in Theorem 6.2 are also unique, assuming that d1 > 1. The proofs will
be omitted - but works by counting the number of elements of G of each prime power
order.
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Example 6.1
The abelian groups of order 8 are exactly C8, C2 × C4, and C2 × C2 × C2.

Example 6.2
The abelian groups of order 12 are, using the corollary Corollary 6.1, C2 ×C2 ×C3,
C4 × C3, and using Theorem 6.2, C2 × C6 and C12. However, C2 × C3 ∼= C6 and
C3 × C4 ∼= C12, so the groups derived are isomorphic.

Definition 6.1 (Exponent)
The exponent of a group G is the least integer n ≥ 1 such that gn = 1 for all g ∈ G.
Equivalently, the exponent is the lowest commonmultiple of the orders of elements
in G.

Example 6.3
The exponent of A4 is lcm{2, 3} = 6.

Corollary 6.2 (Structure Theorem)
Let G be a finite abelian group. Then G contains an element which has order equal
to the exponent of G.

Proof. If G ∼= Cd1 × · · · ×Cdt for di | di+1, every g ∈ G has order dividing dt. Hence
the exponent is dt, and we can choose a generator of Cdt to obtain an element in G
of the same ordera.
aSay o(h) = dt with h ∈ Cdt then (e, e, . . . , e, h) ∈ G and has order dt
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Part II
Rings
§7 Rings

§7.1 Definitions

Definition 7.1 (Ring)
A ring is a triple (R,+, ·) whereR is a set and +, · are binary operationsR×R → R,
satisfying the following axioms.

1. (R,+) is an abelian group, and we will denote the identity element 0 and the
inverse of x as −x;

2. (R, ·) satisfies the group axioms except for the invertibility axiom, and we will
denote the identity element 1 and the inverse of x as x−1 if it exists;

3. for all x, y, z ∈ Rwe have x · (y+ z) = x · y+ x · z and (y+ z) · x = y · x+ z · x.

If multiplication is commutative, we say that R is a commutative ring.

In this course, we will study only commutative rings.

Remark 13. For all x ∈ R,

0 · x = (0 + 0) · x = 0 · x+ 0 · x =⇒ 0 · x = 0

Further,

0 = 0 · x = (1 + −1) · x = x+ (−1 · x) =⇒ −1 · x = −x

Remark 14. Addition being commutative follows from distributive law and the other
axioms so not necessary for it to be an abelian group.

Definition 7.2 (Subring)
A subset S ⊂ R is a subring, denoted S ≤ R, if (S,+, ·) is a ring with the same
identity elements.

Remark 15. It suffices to check the closure axioms for addition and multiplication; the
other properties are inherited.
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Example 7.1
Z ≤ Q ≤ R ≤ C are rings. The set Z[i] = {a+ bi : a, b ∈ Z} is a subring of C. This is
known as the ring of Gaussian integers.

Example 7.2
The set Q[

√
2] =

{
a+ b

√
2 : a, b ∈ Q

}
is a subring of R.

Example 7.3
The set Z⧸nZ is a ring.

Example 7.4
Let R,S be rings. Then the product R× S is a ring under the binary operations

(a, b) + (c, d) = (a+ c, b+ d); (a, b) · (c, d) = (a · c, b · d)

The additive identity is (0R, 0S) and the multiplicative identity is (1R, 1S).

Note that the subset R × {0} is preserved under addition and multiplication, so it
is a ring, but it is not a subring because the multiplicative identity is different.

§7.2 Polynomials

Definition 7.3 (Polynomial)
Let R be a ring. A polynomial f over R is an expression

f = a0 + a1X + a2X
2 + · · · + anX

n

for ai ∈ R. The term X is a formal symbol, no substitution of X for a value will be
made. We could alternatively define polynomials as finite sequences of terms in R.

The degree of a polynomial f is the largest n such that an 6= 0. A degree-n poly-
nomial is monic if an = 1. We write R[X] for the set of all such polynomials over
R.

Let g = b0 + b1X + · · · + bnX
n. Then we define

f + g = (a0 + b0) + (a1 + b1)X + · · · + (an + bn)Xn; f · g =
∑

i

 i∑
j=0

ajbi−j

Xi
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Then (R[X],+, ·) is a ring. The identity elements are the constant polynomials 0 and
1. We can identify the ring R with the subring of R[X] of constant polynomials.

Definition 7.4 (Unit)
An element r ∈ R is a unit if r has a multiplicative inverse. The units in a ring,
denoted R×, form an abelian group under multiplication.

For instance, Z× = {±1} and Q× = Q \ {0}.

Definition 7.5 (Field)
A field is a ring where all nonzero elements are units and 0 6= 1.

Example 7.5
Z⧸nZ is a field iff n is a prime.

Remark 16. If R is a ring such that 0 = 1, then every element in the ring is equal to zero.
Indeed, x = 1 · x = 0 · x = 0. Thus, the exclusion of rings with 0 = 1 in the definition of
a field simply excludes the trivial ring.

Proposition 7.1
Let f, g ∈ R[X] such that the leading coefficient of g is a unit. Then there exist
polynomials q, r ∈ R[X] such that f = qg + r, where deg r < deg g.

Remark 17. This is the Euclidean algorithm for division, adapted to polynomial rings.

Proof. Let n = deg f andm = deg g, so by induction on n

f = anX
n + · · · + a0; g = bmX

m + · · · + b0

By assumption, bm ∈ R×.

If n < m then let q = 0 and r = f .

Conversely, we have n ≥ m. Consider the polynomial f1 = f − anb
−1
m Xn−mg. This

has degree at most n − 1. Hence, we can use induction on n to decompose f1 as
f1 = q1g + r. Thus f = (q1 + anb

−1
m Xn−m)g + r as required.

Remark 18. IfR is a field, then every nonzero element ofR is a unit. Therefore, the above
algorithm can be applied for all polynomials g unless g is the constant polynomial zero.
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Example 7.6
Let R be a ring and X be a set. Then the set of functions X → R is a ring under

(f + g)(x) = f(x) + g(x); (f · g)(x) = f(x) · g(x)

The set of continuous functions R → R is a subring of the ring of all functions R →
R, since they are closed under addition and multiplication. The set of polynomial
functions R → R is also a subring, and we can identify this with the ring R[X].

Example 7.7
Let R be a ring. Then the power series ring R[[X]] = {a0 + a1X + a2X

2 + . . . ai ∈ R}
is the set of power series over R. This is defined similarly to the polynomial ring,
but we permit infinitely many nonzero elements in the expansion. The power series
is defined formally; we cannot actually carry out infinitely many additions in an
arbitrary ring. We instead consider the power series as a sequence of numbers.

Example 7.8
Let R be a ring. Then the ring of Laurent polynomials is R[X,X−1] = {

∑
i∈Z aiX

i :
ai ∈ R} with the restriction that ai 6= 0 only for finitely many i.

§8 Homomorphisms, Ideals and Quotients

§8.1 Homomorphisms

Definition 8.1 (Ring Homomorphism)
Let R and S be rings. A function φ : R → S is a ring homomorphism if

1. φ(r1 + r2) = φ(r1) + φ(r2);

2. φ(r1 · r2) = φ(r1) · φ(r2);

3. φ(1R) = 1S .

We can derive that φ(0R) = 0S from (i).

Definition 8.2 (Isomorphism)
A ring homomorphism is an isomorphism if it is bijective.
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Definition 8.3 (Kernel)
The kernel of a ring homomorphism is kerφ = {r ∈ R : φ(r) = 0}.

Lemma 8.1
Let R,S be rings. Then a ring homomorphism φ : R → S is injective iff kerφ = {0}.

Proof. Let φ : (R,+) → (S,+) be the induced group homomorphism on addition.
The result then follows from the corresponding fact about group homomorphisms.

§8.2 Ideals

Definition 8.4 (Ideal)
A subset I ⊆ R is an ideal, written I ◁ R, if

1. I is a subgroup of (R,+);

2. if r ∈ R and x ∈ I , then rx ∈ I .

Definition 8.5 (Proper Ideal)
We say that an ideal is proper if I 6= R.

Lemma 8.2
Let φ : R → S be a ring homomorphism. Then kerφ is an ideal of R.

Proof. Considering the induced group homomorphism on addition, φ : (R,+) →
(S,+), kerφ is a subgroup of (R,+).

If r ∈ R and x ∈ kerφ, then

φ(rx) = φ(r)φ(x) = φ(r) · 0 = 0

Hence rx ∈ kerφ.

Remark 19. If I contains a unit, then themultiplicative identity lies in I . Then all elements
lie in I . In particular, if I is a proper ideal, 1 6∈ I . Hence a proper ideal I is not a subring
of R.
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Lemma 8.3
The ideals in Z are precisely the subsets of the form nZ for any n = 0, 1, 2, . . . .

Proof. First, we can check directly that any subset of the form nZ is an ideal. Now,
let I be any nonzero ideal of Z and let n be the smallest positive element in I . Then
nZ ⊆ I . Let m ∈ I . Then by the Euclidean algorithm, m = qn + r for q, r ∈ Z and
r ∈ {0, 1, . . . , n− 1}. Then r = m − qn. We know qn ∈ I since n ∈ I , so r ∈ I . If
r 6= 0, this contradicts the minimality of n as chosen above. So I = nZ exactly.

Definition 8.6 (Generated Ideals)
For an element a ∈ R, we write (a) to denote the subset ofR given by multiples of a;
that is (a) = {ra : r ∈ R}. This is an ideal, known as the ideal generated by a. More
generally, if a1, . . . , an ∈ R, then (a1, . . . , an) = {r1a1 + . . . rnan : ri ∈ R} is the set
of elements in R given by linear combinations of the ai. This is also an ideal.

Definition 8.7 (Prinipal Ideal)
Let I ◁ R. Then I is principal if there exists some a ∈ R such that I = (a).

§8.3 Quotients

Theorem 8.1
Let I ◁ R. Then the set R⧸I of cosetsa of I in (R,+) forms the quotient ring under
the operations

(r1 + I) + (r2 + I) = (r1 + r2) + I; (r1 + I) · (r2 + I) = (r1 · r2) + I

This ring has the identity elements

0R⧸I
= 0R + I; 1R⧸I

= 1R + I

Further, the mapR → R⧸I defined by r 7→ r+ I is a ring homomorphism called the
quotient map. The kernel of the quotient map is I . Hence any ideal is the kernel of
some homomorphism.
aLeft or right cosets, doesn’t matter which.

Proof. From the analogous result from groups, the addition defined on the set of
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cosets yields the group
(
R⧸I,+

)
. If r1 + I = r′

1 + I and r2 + I = r′
2 + I , then

r′
1 = r1 + a1 and r′

2 = r2 + a2 for some a1, a2 ∈ I . Then

r′
1r

′
2 = (r1 + a1)(r2 + a2) = r1r2 + a1r2

∈I

a + r1a2
∈I

+ a1a2
∈I

Hence (r′
1r

′
2) + I = (r1r2) + I . So the operations are well defined.

Remaining properties forR⧸I follows from those forR. The remainder of the proof
is trivial.
aRecall we only consider commutative rings in this course so a1r2 = r2a1.

Example 8.1
In the integers Z, the ideals are nZ. Hence we can form the quotient ring Z⧸nZ. The
ring Z⧸nZ has elements nZ, 1 + nZ, . . . , (n − 1) + nZ. Addition and multiplication
behave like in modular arithmetic modulo n.

Example 8.2
Consider the ideal (X) inside the polynomial ring C[X]. This ideal is the set of
polynomials with zero constant term. Let f(X) = anX

n + · · · + a0 be an arbitrary
element of C[X], anX

n, . . . , a1X
1 ∈ (X). Then f(X) + (X) = a0 + (X).

Thus, there exists a bijection between C[X]⧸(X) and C, defined by f(x) + (X) 7→
f(0), with inverse a 7→ a + (X). This bijection is a ring homomorphism, hence
C[X]⧸(X) ∼= C.

Example 8.3
Consider (X2 + 1) ◁ R[X], R[X]⧸(X2 + 1) = {f(X) + (X2 + 1) : f(X) ∈ R[X]}. For
f(X) = anX

n + · · · + a0 ∈ R[X], by Proposition 7.1 we can apply the Euclidean
algorithm to write f(X) = q(X)(X2 + 1) + r(X) where deg r < 2. Hence r(X) =
a+ bX for a, b ∈ R.

Thus, any element ofR[X]⧸(X2 + 1) can bewritten a+bX+(X2+1). Suppose a coset
can be represented by two representatives: a+ bX + (X2 + 1) = a′ + b′X + (X2 + 1).
Then,

a+ bX − a′ − b′X = (a− a′) − (b− b′)X = g(X)(X2 + 1)

Hence g(X) = 0, giving a− a′ = 0 and b− b′ = 0. Hence the coset representative is
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unique.

Consider the bijection φ between this quotient ring and the complex numbers given
by a+bX+(X2 +1) 7→ a+bi. We can show that φ is a ring homomorphism. Indeed,
it preserves addition, and 1+(X2 +1) 7→ 1, so it suffices to check that multiplication
is preserved.

φ((a+ bX + (X2 + 1)) · (c+ dX + (X2 + 1))) = φ((a+ bX)(c+ dX) + (X2 + 1))
= φ(ac+ (ad+ bc)X + bd(X2 + 1) − bd+ (X2 + 1))

= φ(ac− bd+ (ad+ bc)X + (X2 + 1))
= ac− bd+ (ad+ bc)i

= (a+ bi)(c+ di)
= φ((a+ bX) + (X2 + 1))φ((c+ dX) + (X2 + 1))

Thus R[X]⧸(X2 + 1)
∼= C.

§8.4 Isomorphism theorems

Theorem 8.2 (First Isomorphism Theorem)
Let φ : R → S be a ring homomorphism. Then,

kerφ ◁ R; Imφ ≤ S; R⧸kerφ ∼= Imφ

Proof. We already saw that kerφ ◁ R, Lemma 8.2.

We know that Imφ ≤ (S,+). Nowwe show that Imφ is closed undermultiplication.

φ(r1)φ(r2) = φ(r1r2) ∈ Imφ

Finally,

1S = φ(1R) ∈ Imφ

Hence Imφ is a subring of S.

Let K = kerφ. Then, we define Φ : R⧸K → Imφ by r + K 7→ φ(r). By appeal-
ing to the first isomorphism theorem from groups, this is well-defined, a bijection,
and a group homomorphism under addition. It therefore suffices to show that Φ
preserves multiplication and maps the multiplicative identities to each other.

Φ(1R +K) = φ(1R) = 1S
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Φ((r1 +K)(r2 +K)) = Φ(r1r2 +K)
= φ(r1r2)
= φ(r1)φ(r2)
= Φ(r1 +K)Φ(r2 +K).

The result follows as required.

Theorem 8.3 (Second Isomorphism Theorem)
Let R ≤ S and J ◁ S. Then,

R ∩ J ◁ R

R+ J = {r + a : r ∈ R, a ∈ J} ≤ S

R⧸R ∩ J
∼= (R+ J)⧸J ≤ S⧸J

Proof. By the second isomorphism theorem for groups, R + J ≤ (S,+). Further,
1S = 1S + 0S , and since R is a subring, 1S + 0S ∈ R+ J hence 1S ∈ R+ J .

If r1, r2 ∈ R and a1, a2 ∈ J , we have

(r1 + a1)(r2 + a2) = r1r2︸︷︷︸
∈R

+ r1a2︸︷︷︸
∈J

+ r2a1︸︷︷︸
∈J

+ a1a2︸ ︷︷ ︸
∈J

∈ R+ J

Hence R+ J is closed under multiplication, giving R+ J ≤ S.

Let φ : R → S⧸J be defined by r 7→ r + J . This is a ring homomorphism, since
it is the composite of the inclusion homomorphism R ⊆ Sa and the quotient map
S → S⧸J . The kernel of φ is the set {r ∈ R : r + J = J} = R ∩ J . Since this is the
kernel of a ring homomorphism, R ∩ J is an ideal in R. The image of φ is

{r + J | r ∈ R} = (R+ J)⧸J ≤ S⧸J.

By the first isomorphism theorem, R⧸R ∩ J
∼= (R+ J)⧸J as required.

aThis is just r 7→ r for r ∈ R.

Remark 20. If I ◁ R, there exists a bijection between ideals in R⧸I and the ideals of R
containing I . Explicitly,

K 7→{r ∈ R | r + I ∈ K}
J⧸I 7→ J
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Theorem 8.4 (Third Isomorphism Theorem)
Let I ◁ R and J ◁ R with I ⊆ J . Then,

J⧸I ◁
R⧸I

R/I⧸J/I ∼= R⧸J

Proof. Let φ : R⧸I → R⧸J defined by r + I 7→ r + J . We can check that this is a
surjective ring homomorphism (well-defined since I ⊆ J) by considering the third
isomorphism theorem for groups. Its kernel is {r + I : r ∈ J} = J⧸I , which is an
ideal in R⧸I , and we conclude by use of the first isomorphism theorem.

Remark 21. J⧸I is not a quotient ring, since J is not in general a ring; this notation should
be interpreted as a set of cosets.

Example 8.4
Consider the surjective ring homomorphism φ : R[X] → C which is defined by

f =
∑

n

anX
n 7→ f(i) =

∑
n

ani
n

Its kernel can be found by the Euclidean algorithm due to Proposition 7.1, yielding
kerφ = (X2 + 1). Applying the first isomorphism theorem, we immediately find
R[X]⧸(X2 + 1)

∼= C.

Example 8.5
Let R be a ring. Then there exists a unique ring homomorphism i : Z → R. Indeed,
we must have

0Z 7→ 0R; 1Z 7→ 1R

This inductively defines

n 7→ 1R + · · · + 1R︸ ︷︷ ︸
n times

The negative integers are also uniquely defined, since any ring homomorphism is a
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group homomorphism.

−n 7→ −(1R + · · · + 1R︸ ︷︷ ︸
n times

)

We can show that any such construction is a ring homomorphism as required.

Then, the kernel of the ring homomorphism is an ideal of Z, hence it is nZ for some
n. Hence, by the first isomorphism theorem, any ring contains a copy of Z⧸nZ, since
it is isomorphic to the image of i. If n = 0, then the ring contains a copy of Z itself,
and if n = 1, then the ring is trivial since 0 = 1.

Definition 8.8 (Characteristic)
The number n is known as the characteristic of R.

Example 8.6
For example, Z,Q,R,C have characteristic zero. The rings Z⧸pZ,Z⧸pZ[X] have char-
acteristic p.

§9 Integral domains, maximal ideals and prime ideals

§9.1 Integral domains

Definition 9.1 (Integral Domain)
An integral domain is a ring R with 0 6= 1 such that for all a, b ∈ R, ab = 0 implies
a = 0 or b = 0.

Definition 9.2 (Zero-Divisor)
A zero divisor in a ring R is a nonzero element a ∈ R such that ab = 0 for some
nonzero b ∈ R.

A ring is an integral domain iff it has no zero divisors.

Example 9.1
All fields are integral domains (if ab = 0 with b 6= 0, multiply by b−1 to get a = 0).
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Example 9.2
Any subring of an integral domain is an integral domain. For instance, Z ≤ Q and
Z[i] ≤ C are integral domains.

Example 9.3
The ring Z × Z is not an integral domain. Indeed, (1, 0) · (0, 1) = (0, 0).

Lemma 9.1
Let R be an integral domain. Then R[X] is an integral domain.

Proof. Wewill show that any two nonzero elements produce a nonzero element. In
particular, let

f =
∑

n

anX
n; g =

∑
n

bnX
n

Since these are nonzero, the leading coefficients an and bm are nonzero. Here, the
leading term of the product fg has form anbmX

n+m. SinceR is an integral domain,
anbm 6= 0, so fg is nonzero.

Further, the degree of fg is n+m, the sum of the degrees of f and g.

Lemma 9.2
LetR be an integral domain, and f 6= 0 be a nonzero polynomial inR[X]. We define
roots(f) = {a ∈ R : f(a) = 0}. Then |roots(f)| ≤ deg(f).

Proof. Exercise on the Sheet 2. The main idea is to use the Euclidean algorithm on
a root to extract out the linear factors.

Theorem 9.1
Let F be a field. Then any finite subgroup G of (F×, ·) is cyclic.

Proof. G is a finite abelian group. If G is not cyclic, we can apply Theorem 6.2 for
finite abelian groups to show that there existsH ≤ G such thatH ∼= Cd1 ×Cd1

a for
some integer d1 ≥ 2. The polynomial f(X) = Xd1 − 1 ∈ F [X] has degree d1, but
has at least d2

1 roots, since any element ofH is a root. This contradicts the previous
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lemma, Lemma 9.2.
aWe get from the theorem G ∼=

∏
i
Cdi , as G not cyclic wlog d1 | d2 and so there exists a subgroup

Cd1 ≤ Cd2 .

Example 9.4(
Z⧸pZ

)×
is cyclic.

Proposition 9.1
Any finite integral domain is a field.

Proof. Let 0 6= a ∈ R, where R is an integral domain. Consider the map φ : R → R
given by x 7→ ax.

If φ(x) = φ(y), then a(x − y) = 0. But a 6= 0, hence x − y = 0 as R is an integral
domain. Hence φ is injective. Since R is finite, φ is surjective so ∃ b s.t. ab = 1, i.e.
a is a unit. This may be repeated for all a, thus R is a field.

Theorem 9.2
Let R be an integral domain then ∃ a field F s.t.

1. R ≤ F

2. Every element of F can be written in the form ab−1 where a, b ∈ R and b 6= 0.

Such a field F is called the field of fractions of R.

Proof. Consider the set S =
{
(a, b) ∈ R2 : b 6= 0

}
. We can define an equivalence

relation

(a, b) ∼ (c, d) ⇐⇒ ad = bc

This is reflexive and symmetric. We can show directly that it is transitive.

(a, b) ∼ (c, d) ∼ (e, f) =⇒ ad = bc; cf = de

=⇒ adf = bcf = bde

=⇒ d(af − be) = 0
=⇒ (a, b) ∼ (e, f) as d 6= 0 and R an integral domain.

Hence ∼ is indeed an equivalence relation. Now, let F = S⧸∼, and we write a
b for
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the class [(a, b)]. We define the ring operations

a

b
+ c

d
= ad+ bc

bd
; a

b
· c
d

= ac

bd

These can be shown to be well-defined. Thus, F is a ring with identities 0F = 0R
1R

and 1F = 1R
1R

.

If a
b 6= 0F , then a 6= 0. Thus, b

a exists, and a
b · b

a = ab
ba = 1R

1R
= 1F . Hence F is a field.

1. We can identify R with the subring of F given by
{

r
1R

: r ∈ R
}

≤ F . This is
clearly isomorphic to R.

2. Further, any element of F can be written as a
b = ab−1 as required.

This is analogous to the construction of the rationals using the integers.

Example 9.5
Z is an integral domain with field of fractions Q.

Example 9.6
Consider C[X]. This has field of fractions C(X), called the field of rational functions
in X .

§9.2 Maximal ideals

Definition 9.3 (Maximal Ideal)
An ideal I ◁ R is maximal if I 6= R and, if I ⊆ J ◁ R, we have J = I or J = R.

So a maximal ideal is the largest proper ideal.

Lemma 9.3
A nonzero ring R is a field iff its only ideals are zero or R.

Proof. ( =⇒ ): Suppose R is a field. If 0 6= I ◁ R, then I contains a nonzero element,
which is a unit sinceR is a field. We have seen that an ideal containing a unit implies
it is the whole ring, hence I = R.

(⇐=): Now, suppose a ring R has ideals that are only zero or R. If 0 6= x ∈ R,
consider (x). This is nonzero since it contains x. By assumption, (x) = R. Thus, the
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element 1 lies in (x). Hence, there exists y ∈ R such that xy = 1, and hence this y is
the multiplicative inverse as required.

Proposition 9.2
Let I ◁ R. Then I is maximal iff R⧸I is a field.

Proof. R⧸I is a field iff its ideals are either zero, denoted I⧸I
a, or R⧸I itself. By

Remark 20, I and R are the only ideals in R which contain I . Equivalently, I ◁ R is
maximal.
aThis is not a ring but the set of cosets given by elements of I .

§9.3 Prime ideals

Definition 9.4 (Prime Ideals)
An ideal I ◁ R is prime if I 6= R and for all a, b ∈ R such that ab ∈ I , we have a ∈ I
or b ∈ I .

Example 9.7
The ideals in the integers are nZ for some n ≥ 0. nZ is a prime ideal iff n is prime
or zero.

The case for n = 0 is trivial.

If n 6= 0 we can use the property that p | ab implies either p | a or p | b. So if ab ∈ pZ
then a ∈ pZ or b ∈ pZ.

Conversely, if n is composite, we can write n = uv for u, v > 1. Then uv ∈ nZ but
u, v 6∈ nZ.

Proposition 9.3
Let I ◁ R. Then I is prime iff R⧸I is an integral domain.

Proof. If I is prime, then for all ab ∈ I we have a ∈ I or b ∈ I . Equivalently, for all
a+ I, b+ I ∈ R⧸I , we have (a+ I)(b+ I) = 0 + I if a+ I = 0 + I or b+ I = 0 + I .
This is the definition of an integral domain.

Remark 22. If I is a maximal ideal, then R⧸I is a field by proposition 9.2. A field is an
integral domain. Hence any maximal ideal is prime.
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Remark 23. If the characteristic of a ring is n, then Z⧸nZ ≤ R. In particular, if R is an
integral domain, then Z⧸nZmust be an integral domain. Equivalently, nZ ◁Z is a prime
ideal. Hence n is zero or prime. Thus, in an integral domain, the characteristic must
either be zero or prime.
In particular, a field always has a characteristic, which is either zero (in which case it
contains Z and henceQ) or prime (in which case it contains Z⧸pZ = Fp which is already
a field).
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§10 Factorisation in integral domains

In this section, let R be an integral domain.

§10.1 Prime and irreducible elements

Recall that an element a ∈ R is a unit if it has a multiplicative inverse inR. Equivalently,
an element a is a unit if and only if (a) = R. Indeed, if (a) = R, then 1 ∈ (a) hence there
exists a multiple of a equal to 1. We denote the set of units in R by R×.

Definition 10.1 (Divides)
An element a ∈ R divides b ∈ R, written a | b, if there exists c ∈ R such that b = ac.
Equivalently, (b) ⊆ (a).

Definition 10.2 (Associates)
Two elements a, b ∈ R are associates if a = bc where c is a unit. Informally, the two
elements differ by multiplication by a unit. Equivalently, (a) = (b).

Definition 10.3 (Irreducible)
An element r ∈ R is irreducible if r 6= 0 is not a unit, and r = ab implies a or b is a
unit.

Definition 10.4 (Prime)
An element r ∈ R is prime if r 6= 0 is not a unit and r | ab implies r | a or r | b.

Remark 24. These properties depend on the ambient ring R; for instance, 2 is prime and
irreducible in Z, but neither prime nor irreducible in Q as it’s a unit.
The polynomial 2X is irreducible in Q[X], but not in Z[X].

Lemma 10.1
(r) ◁ R is a prime ideal iff r = 0 or r is prime.

Proof. ( =⇒ ): Suppose (r) is a prime idealwith r 6= 0. Since prime ideals are proper,
r cannot be a unit. Suppose r | ab, or equivalently, ab ∈ (r). By the definition of a
prime ideal, a ∈ (r) or b ∈ (r). Hence, r | a or r | b. By definition of a prime element,
r is prime.
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(⇐=): Conversely, first note that the zero ideal (0) = {0} is a prime ideal, since R is
an integral domain.
Suppose r is prime. We know (r) 6= R since r is not a unit. If ab ∈ (r), then r | ab,
so r | a or r | b, giving a ∈ (r) or b ∈ (r) as required for (r) to be a prime ideal.

Lemma 10.2
Prime elements are irreducible.

Proof. Let r be prime. Then r is nonzero and not a unit. Suppose r = ab. Then, in
particular, r | ab, so r | a or r | b by primality. Let r | a without loss of generality.
Hence a = rc for some element c ∈ R. Then, r = ab = rcb, so r(1 − cb) = 0. Since
R is an integral domain, and r 6= 0, we have cb = 1, so b is a unit.

Example 10.1
The converse does not hold in general. Let

R = Z[
√

−5] =
{
a+ b

√
−5 : a, b ∈ Z

}
≤ C; R ∼= Z[X]⧸(X2 + 5)

Since R is a subring of the field C, it is an integral domain. We can define the norm
N : R → Z by N(a + b

√
−5) = a2 + 5b2 ≥ 0. Note that this norm is multiplicative:

N(z1z2) = N(z1)N(z2).

We claim that the units are exactly ±1. Indeed, if r ∈ R×, then rs = 1 for some
element s ∈ R. Then, N(r)N(s) = N(1) = 1, so N(r) = N(s) = 1. But the only
elements r ∈ R with N(r) = 1 are r = ±1.

We will now show that the element 2 ∈ R is irreducible. Suppose 2 = rs for r, s ∈ R.
By the multiplicative property of N , N(2) = 4 = N(r)N(s) can only be satisfied
by N(r), N(s) ∈ {1, 2, 4}. Since a2 + 5b2 = 2 has no integer solutions, R has no
elements of norm 2. Hence, either r or s has unit norm and is thus a unit by the
above discussion. We can show similarly that 3, 1 +

√
−5, 1 −

√
−5 are irreducible,

as there exist no elements of norm 3.

We can now compute directly that (1 +
√

−5)(1 −
√

−5) = 6 = 2 · 3, hence 2 |
(1 +

√
−5)(1 −

√
−5). But 2 ∤ (1 +

√
−5) and 2 ∤ (1 −

√
−5), which can be checked

by taking norms. Hence, 2 is irreducible but not a prime.

Takeaways
So here is an example showing irreducible 6=⇒ prime
In order to construct this example, we have exhibited two factorisations of 6 into
irreducibles: (1 +

√
−5)(1 −

√
−5) = 6 = 2 · 3. Since R× = {±1}, these irreducibles

in the factorisations are not associates.
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§10.2 Principal ideal domains

Definition 10.5 (Principal Ideal Domain)
An integral domain R is a principal ideal domain (PID) if all ideals are principal
ideals. In other words, for all ideals I ◁R, there exists an element r such that I = (r).

Example 10.2
Z is a principal ideal domain by Lemma 8.3.

Proposition 10.1
In a principal ideal domain, all irreducible elements are prime.

Proof. Let r ∈ R be irreducible, and suppose r | ab. If r | a, the proof is complete,
so suppose r ∤ a.

Since R is a principal ideal domain, the ideal (a, r) is generated by a single element
d ∈ R. In particular, since r ∈ (d), we have d | r so r = cd for some c ∈ R.

Since r is irreducible, either c or d is a unit. If c is a unit, (a, r) = (d) = (r), so in
particular r | a, which contradicts the assumption that r ∤ a, so c cannot be a unit.
Thus, d is a unit. In this case, (a, r) = R. By definition of (a, r), there exist s, t ∈ R
such that 1 = sa+ tr. Then, b = sab+ trb. We have r | sab since r | ab, and we know
r | trb. Hence r | b as required.

Lemma 10.3
Let R be a principal ideal domain and 0 6= r ∈ R Then r is irreducible iff (r) is
maximal.

Proof. ( =⇒ ): Since r is not a unit, (r) 6= R.
Suppose (r) ⊆ J ⊆ R where J is an ideal in R. Since R is a principal ideal domain,
J = (a) for some a ∈ R. In particular, r = ab for some b ∈ R, since (r) ⊆ J . Since r
is irreducible, either a or b is a unit. But if a is a unit, we have J = R. If b is a unit,
then a and r are associates so they generate the same ideal. Hence, (r) is maximal.

(⇐=): Note that r is not a unit, since (r) 6= R. Suppose r = ab. Then (r) ⊆ (a) ⊆ R.
But since (r) is maximal, either (a) = (r) or (a) = R. If (a) = (r), then b is a unit. If
(a) = R, then a is a unit. Hence r is irreducible.

Remark 25. 1. The converse direction doesn’t depend on R being a PID only that it’s
an integral domain.
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2. IfR is a PID and 0 6= r ∈ R. Then, (r) is maximal iff r is irreducible (Lemma 10.3),
which is true iff r is prime (Lemma 10.2 and proposition 10.1), which is equivalent
to the fact that (r) is prime (Lemma 10.1). Hence, the maximal ideals are the
nonzero prime ideals.

Definition 10.6 (Euclidean Domain)
An integral domain is a Euclidean domain if there exists a function φ : R \ {0} →
Z≥0 such that, for all a, b ∈ R.

1. If a | b then φ(a) ≤ φ(b);

2. If b 6= 0 then ∃ q, r ∈ R such that a = bq + r and either r = 0 or φ(r) < φ(b).

Such a φ is called a Euclidean function.

Example 10.3
Z is a Euclidean domain, where the Euclidean function φ is the absolute value func-
tion.

Proposition 10.2
Euclidean domains are principal ideal domains.

Proof. Let R have Euclidean function φ. Let I ◁ R be a nonzero ideal.
Let b ∈ I \ {0} that minimises φ(b). Then (b) ⊆ I .
For any element a ∈ I , we can use the Euclidean algorithm to show a = bq + r
where r = 0 or φ(r) < φ(b). But since r = a − bq ∈ I , φ(r) cannot be lower than
the minimal element φ(b). Thus r = 0, so a = bq. Hence, I = (b), so all ideals are
principal.

Remark 26. In the above proof, only the second property of the Euclidean function was
used. The first property is included in the definition since it will allow us to easily de-
scribe the units in the ring.

R× = {u ∈ R : u 6= 0, φ(u) = φ(1)}

It can be shown that, if there exists a function φ satisfying (ii), there exists a (possibly
not unique) function φ′ satisfying (i) and (ii).

Example 10.4
Let F be a field. Then F [X] is a Euclidean domain with Euclidean function φ(f) =
deg(f). The second property of Euclidean domains is proven using Proposition 7.1
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whilst the first is easy to check.

So F [X] is a PID by Proposition 10.2

Example 10.5
The ring R = Z[i] is a Euclidean domain with φ(u+ iv) = N(u+ iv) = u2 + v2.
Since the norm is multiplicative, N(zw) = N(z)N(w) which immediately gives
property (i) in the definition.
Consider z, w ∈ Z[i] where w 6= 0. Consider z

w ∈ C. This has distance less than 1
from the nearest element q of R, i.e. |z/w− q| < 1 as R is every complex point with
integer components.
Let r = z − wq ∈ R. Then z = wq + r where

φ(r) = |r|2 = |z − wq|2 < |w|2 = φ(w)

So property (ii) is satisfied.

So Z[i] is a PID by Proposition 10.2

Example 10.6
Let A be a nonzero n× nmatrix over a field F . Let I = {f ∈ F [X] : f(A) = 0}.

I is an ideal. Indeed, if f, g ∈ I , then (f − g)(A) = f(A) − g(A) = 0, and for f ∈ I
and g ∈ F [X], we have (f · g)(A) = f(A) · g(A) = 0 as required.

Since F [X] is a principal ideal domain, I = (f) for some polynomial f ∈ F [X].
All units in F [X] are the nonzero constant polynomialsa. Hence, the polynomial
of smallest degree in I is unique up to multiplication by a unit, so without loss of
generality we may assume f is monic.

Then for g ∈ F [X], g(A) = 0 ⇐⇒ g ∈ I = (f), i.e. f | g. Thus f is the minimal
polynomial of A.
aCan check by looking at the first property of a Euclidean domain.

Example 10.7 (Field of order 8)
Let F2 be the finite field of order 2, which is isomorphic to Z⧸2Z. Let f(X) be the
polynomial X3 +X + 1 ∈ F2[X].

We claim that f is irreducible. Suppose f = ghwhere the degrees of g, h are positive.
Since the degree of f is 3, one of g, h must have degree 1. Hence f has a root. But
we can check that f(0) = f(1) = 1a so f has no root in F2. Hence f is irreducible as
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required.

Since F2[X] is a principal ideal domain, we have that (f) ◁ F2[X] is a maximal ideal
by Lemma 10.3. Hence, F2[X]⧸(f) is a field. We can verify that this field has order 8,
using the Euclidean algorithm. Any element in this quotient is aX2+bX+c+(f) for
a, b, c ∈ F2. We can show that all 8 of these possibilities yields different polynomials.
So we have constructed a field of order 8. This technique will be explored further
in Part II Galois Theory.
aNote you need to check f(1) = f(3) = f(5) = · · · = 0 in Z i.e. f(1) = 0 in F2.

Example 10.8
The ring Z[X] is not a principal ideal domain. Consider the ideal I = (2, X) ◁ Z[X].
We can write

I = {2f1(X) +Xf2(X) : f1, f2 ∈ Z[X]} = {f ∈ Z[X] : 2 | f(0)}

Suppose I = (f) for some element f . Since 2 ∈ I , we must have 2 = fg for some
polynomial g. By comparing degrees, the degrees of f and g must be zero, since Z
is an integral domain. Hence f is an integer, so f = ±1 or f = ±2. If f = ±1 then
I = Z[X], and if f = ±2 then I = 2Z[X]. These both lead to contradictions, since
1 ∈ I and X 6∈ I respectively.

§10.3 Unique factorisation domains

Definition 10.7 (Unique Factorisation Domain)
An integral domain is a unique factorisation domain (UFD) if

1. Every nonzero, non-unit element is a product of irreducibles;

2. If p1 · · · pm = q1 · · · qn where pi, qi are irreducible, then m = n, and pi, qi are
associates, up to reordering.

GOAL: Show PID =⇒ UFD.

Remark 27. Any field is a UFD as there are no non-unit elements.

Proposition 10.3
LetR be an integral domain satisfying property (1) above (every nonzero, non-unit
element is a product of irreducibles). Then R is a unique factorisation domain iff
every irreducible is prime.
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Proof. ( =⇒ ): Let p ∈ R be irreducible, and p | ab. Then ab = pc for some c ∈ R.
Writing a, b, c as products of irreducibles, it follows fromuniqueness of factorisation
(2) that p | a or p | b. Hence p is prime.

(⇐=): Suppose p1 · · · pm = q1 · · · qn where pi, qi are irreducible and hence prime.
Since p1 | q1 · · · qn, we have p1 | qi for some i. After reordering, we may assume
that p1 | q1, so p1u = q1 for u ∈ R. Since q1 is irreducible, u is a unit since p1
cannot be a unit. Hence p1, q1 are associates. Cancelling p1 from both sides, we find
p2 · · · pm = uq2 · · · qn. We may absorb this unit into q2 without loss of generality.
Inductively, all pi and qi are associates, for each i. HenceR is a unique factorisation
domain.

Definition 10.8 (Noetherian)
Let R be a ring. Suppose, for all nested sequences of ideals in R written I1 ⊆ I2 ⊆
· · · , ∃ N such that In = In+1 for all n ≥ N . Then, we say that R is a Noetherian
ring.

This condition is known as the ‘ascending chain condition’. In other words, we cannot
infinitely nest distinct ideals in a Noetherian ring.

Lemma 10.4
Principal ideal domains are Noetherian rings.

Proof. Let I =
⋃∞

i=1 Ii. Then, I is an ideal inR (Sheet 2). SinceR is a principal ideal
domain, I = (a) for some a ∈ R. Then a ∈

⋃∞
i=1 Ii, so in particular a ∈ IN for some

N . But then for all n ≥ N , (a) ⊆ IN ⊆ In ⊆ In+1 ⊆ I = (a). So all inclusions are
equalities, so in particular In = In+1.

Theorem 10.1
If R is a principal ideal domain, then it is a unique factorisation domain.

Proof. First, we verify property (1) of UFD, that every nonzero, non-unit element is
a product of irreducibles. Let x 6= 0 be an element ofRwhich is not a unit. Suppose
x does not factor as a product of irreducibles. This implies that x is not irreducible.
By definition of irreducibility, we can write x as the product of two elements x1, y1
where x1, y1 are not units. Then either x1 or y1 is not a product of irreducibles, so
wlog we can suppose x1 is not a product of irreducibles. We have (x) ⊆ (x1). This
inclusion is strict, since y1 is not a unit. Now, we can write x1 = x2y2 where x2, y2
are not units, and inductively we can create (x) ⊊ (x1) ⊊ (x2) ⊊ · · · . But R is
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Noetherian, so this is a contradiction to Lemma 10.4. So every nonzero, non-unit
element is indeed a product of irreducibles.

By Proposition 10.3, it suffices to show that every irreducible is prime. This has
already been shown previously by Proposition 10.1. Hence R is a unique factorisa-
tion domain.

Example 10.9
We have shown that ED =⇒ PID =⇒ UFD =⇒ Integral Domain. We now
provide examples for counterexamples to the converses.

The ring Z⧸4Z is not an integral domain since 2 is a zero divisor, hence it is not a ED,
PID or UFD either.

The ring Z[
√

−5] ≤ C is integral, but not a unique factorisation domain and hence
not ED or PID.

The ring Z[X] has been shown to be not a principal ideal domain. We can show
using later results that this is a unique factorisation domain.

We can construct the ring Z
[

1+
√

−19
2

]
, which can be shown to be not a Euclidean

domain, but is a principal ideal domain. This will be proved in Part II Number
Fields.

Finally, Z[i] is a Euclidean domain, and is hence a principal ideal domain, a unique
factorisation domain, and an integral domain.

Definition 10.9 (Common Divisors and Multiples)
Let R be an integral domain.

1. d ∈ R is a common divisor of a1, . . . , an ∈ R if d | ai for all i;

2. d ∈ R is a greatest common divisor of a1, . . . , an if for all common divisors d′,
we have d′ | d;

3. m ∈ R is a common multiple of a1, . . . , an if ai | m for all i;

4. m ∈ R is a least common multiple of a1, . . . , an if for all common multiples
m′, we havem | m′.

Warning 10.1
These do not need to exist in a given ring.

Remark 28. Greatest common divisors and lowest common multiples are unique up to
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associates, if they exist.

Proposition 10.4
In unique factorisation domains, greatest common divisors and least common mul-
tiples always exist.

Proof. Let ai = ui
∏

j p
nij

j where the pj are irreducible and pairwise non-associate,
ui is a unit, and nij ∈ Z≥0. We claim that d =

∏
j p

mj

j , wheremj = min1≤i≤n nij , is
the greatest common divisor. Certainly d is a common divisor. If d′ is a common
divisor, then d′ can be written as a product of irreducibles, which will be denoted
d′ = w

∏
j p

tj

i for a unit w. We can see that tj ≤ nij for all i, so in particular, tj ≤ mj .
This implies d′ | d. Hence d is a greatest common divisor. The argument for the
least common multiple is similar, replacing minima with maxima.

§11 Factorisation in polynomial rings

Theorem 11.1
Let R be a unique factorisation domain. Then R[X] is also a unique factorisation
domain.

The proof for this theorem will require a number of key lemmas. In this subsection, R
will denote a unique factorisation domain, with field of fractions F . We have R[X] ≤
F [X]. Since polynomial rings over fields are Euclidean domains, F [X] is a principal
ideal domain, and hence a unique factorisation domain. This does not immediately
imply that R[X] is a unique factorisation domain, however.

Definition 11.1 (Content)
The content of a polynomial f =

∑n
i=0 aiX

i ∈ R[X] is c(f) = gcd{a0, . . . , an}. This
is well-defined up to multiplication by a unit.

Definition 11.2 (Primitive)
We say that f is primitive if c(f) is a unit.

Lemma 11.1
The product of primitive polynomials is primitive. Further, for f, g ∈ R[X], c(fg)
and c(f)c(g) are associates.
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Proof. Let f =
∑n

i=0 aiX
i and g =

∑m
i=0 biX

i. Suppose fg is not primitive, so c(fg)
is not a unit. This implies that there exists a prime p such that p | c(fg). Since f, g
are primitive, p ∤ c(f) and p ∤ c(g).

p does not divide all of the ak or the bℓ. Let k, ℓ be the smallest values such that
p ∤ ak and p ∤ bℓ. Then, the coefficient of Xk+ℓ in fg is given by∑

i+j=k+ℓ

aibj = · · · + ak−1bℓ+1︸ ︷︷ ︸
divisible by p

+akbℓ + ak+1bℓ−1 + · · ·︸ ︷︷ ︸
divisible by p

Thus p | akbℓ as p | c(fg). This implies p | ak or p | bℓ as p prime E.

To prove the second part, let f = c(f)f0 for some f0 ∈ R[X]. Here, f0 is primitive.
Similarly, g = c(g)g0 for a primitive g0. Thus fg = c(f)c(g)f0g0. The expression
f0g0 is a primitive polynomial by the first part, so c(fg) is equal to c(f)c(g) up to
associates.

Corollary 11.1
If p ∈ R is prime in R, then p is prime in R[X].

Proof. Since R is an integral domain, we have R[X]× = R×a, so p is not a unit. Let
f ∈ R[X]. Then p | f in R[X] ⇐⇒ p | c(f) in R. Thus, if p | gh in R[X], we have
p | c(gh) = bc(g)c(h). In particular, since p is prime in R, we have p | c(g) or p | c(h),
so p | g or p | h. So p is prime in R[X].
aSuppose a, b ∈ R[X] s.t. ab = 1 then as degrees of polynomials add under multiplication deg a =

deg b = 0 so a, b ∈ R.
bWhen we use equality with contents, we implicitly mean they are associates.

Lemma 11.2
Let f, g ∈ R[X], where g is primitive. Then if g | f in F [X], then g | f in R[X].

Proof. Let f = gh, where h ∈ F [X]. We can find a nonzero a ∈ R, such that
ah ∈ R[X]. In particular, we can multiply the denominators of the coefficients of
h to form a. Now, ah = c(ah)h0 where h0 is primitive. Then af = c(ah)h0g. Since
h0 and g are primitive, so is h0g. Thus, taking contents, a | c(ah). This implies
h ∈ R[X]. Hence g | f in R[X].

Lemma 11.3 (Gauss’ lemma)
Let f ∈ R[X] be primitive. Then if f is irreducible in R[X], we have that f is irredu-
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cible in F [X].

Proof. Since f ∈ R[X] is irreducible and primitive, its degree must be larger than
zeroa. Hence f is not a unit in F [X].

Suppose f is not irreducible in F [X], so f = gh for g, h ∈ F [X] with degrees lar-
ger than zero. Let λ ∈ F× such that λ−1g ∈ R[X] is primitive. (For example, let
b ∈ R such that bg ∈ R[X] clears out denominators, then bg = c(bg)g0, giving
λ = c(bg)b−1.) Replacing g by λ−1g and h by λh, we still have a factorisation of f .
Hence, we may assume without loss of generality that g ∈ R[X] and is primitive.
By Lemma 11.2, we have that h ∈ R[X], and we already saw that deg h > 0. This
contradicts irreducibility E.
aIf deg f = 0 and f primitive, f is a unit but this contradicts it being irreducible.

Remark 29. We will see that the reverse implication in Gauss’ lemma also holds.

Lemma 11.4
Let g ∈ R[X] be primitive. If g is prime in F [X], then g is prime in R[X].

Proof. It suffices to show that if f1, f2 ∈ R[X], then g | f1f2 implies g | f1 or g | f2.
Since g is prime in F [X], g | f1 or g | f2 in F [X]. By Lemma 11.2, g | f1 or g | f2 in
R[X] as required.

We can now prove Theorem 11.1, that polynomial rings over unique factorisation do-
mains are unique factorisation domains.

Proof. Let f ∈ R[X]. Then, f = c(f)f0 for f0 primitive in R[X]. Since R is a unique
factorisation domain, c(f) is a product of irreducibles in R. If an element of R is
irreducible, it is irreducible as an element of R[X]. Hence, it suffices to find a fac-
torisation of f0.

Suppose f0 is not irreducible, so f0 = gh for g, h ∈ R[X]. Since f0 is primitive, g
and h are primitive and deg g, deg h > 0a. By induction on the degree, we can factor
f0 as a product of primitive irreducibles in R[X]. So property (1) of UFD is shown.

It now suffices to showuniqueness of the factorisation. By Proposition 10.3, it in fact
suffices to show that every irreducible element ofR[X] is prime. Let f be irreducible.
Write f = c(f)f0, where f0 is primitive. Since f is irreducible, either f0 a unit so f
must be constant or c(f) a unit so f primitive.

Suppose f is constant. Since f is irreducible inR[X], it must be irreducible inR. As
R is a unique factorisation domain, f is prime inR. By Corollary 11.1, f is prime in
R[X].

53



Now, suppose f is primitive. Since f is irreducible in R[X], we can use Gauss’
lemma to show that f is irreducible in F [X]. Thus, f is prime in F [X], as F [X]
is a unique factorisation domain. Finally, we can see that f is prime in R[X] by
Lemma 11.4.
aIf deg g = 0, as g primitive it must be a unit but we assume it is not.

Remark 30. By Lemma 10.2, we know that the prime elements in an integral domain are
irreducible. This implies that the implications in the last paragraph above are in fact
equivalences. In particular, in Gauss’ lemma, the implication is an equivalence.

Example 11.1
Theorem 11.1 implies that Z[X] is a unique factorisation domain.

Example 11.2
Let R[X1, . . . , Xn] be the ring of polynomials in n variables. Define inductively
R[X1, . . . , Xn] = R[X1, . . . , Xn−1][Xn]. Applying Theorem 11.1 inductively =⇒
R[X1, . . . , Xn] is a UFD if R is.

§11.1 Eisenstein’s criterion

Proposition 11.1 (Eisenstein’s Criterion)
Let R be a unique factorisation domain, and f(X) =

∑n
i=0 aiX

i ∈ R[X] be a primit-
ive polynomial. Let p ∈ R be irreducible (or, equivalently, prime) such that

1. p ∤ an;

2. p | ai for all i < n; and

3. p2 ∤ a0.

Then f is irreducible in R[X].

Proof. Suppose f = gh for g, h ∈ R[X] not units. Since f is primitive, g, hmust have
positive degree. Let g(X) =

∑k
i=0 riX

i and h(X) =
∑ℓ

i=0 siX
i, so k + ℓ = n. Then

p ∤ an = rksℓ, so p ∤ rk and p ∤ sℓ. Further, p | a0 = r0s0 so p | r0 or p | s0. Wlog, we
may assume p | r0. There exists a minimal j ≤ k such that p | ri ∀ i < j but p ∤ rj .

aj = r0sj + r1sj−1 + · · · + rj−1s1

p|ri ∀ i<j

+rjs0

By assumption, aj is divisible by p since j < n. Further, the first j terms in the
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expansion are divisible by p. Thus, p | rjs0. By assumption, p ∤ rj , so p | s0, so
p2 | r0s0 = a0, contradicting the third criterion E.

Example 11.3
Let f(X) = X3 + 2X + 5 ∈ Z[X]. We will show this is irreducible as a polynomial
over Q. If f is reducible in Z[X], then it factorises as f(X) = (X + a)(X2 + bX + c)
up to multiplication by units. Here, ac = 5. But ±1,±5 are not roots of f E, so this is
irreducible in Z[X]. By Gauss’ lemma, f is irreducible in Q[X], since Q is the field
of fractions of Z. In particular,Q[X]⧸(f) is a field by Lemma 10.3, since the ideal (f)
is maximal.

Example 11.4
Let p ∈ Z be a prime, and let f(X) = Xn−p. By Eisenstein’s criterion, f is irreducible
in Z[X]. It is then irreducible in Q[X] by Gauss’ lemma.

Example 11.5
Consider f(X) = Xp−1 +Xp−2 + · · · +X + 1 ∈ Z[X], where p is prime. Eisenstein’s
criterion does not apply directly. Consider

f(X) = Xp − 1
X − 1

; Y = X − 1

By using this substitution of Y ,

f(Y + 1) = (Y + 1)p − 1
Y − 1 + 1

= Y p−1 +
(
p

1

)
Y p−2 + · · · +

(
p

p− 2

)
Y +

(
p

p− 1

)

We can apply Eisenstein’s criterion to this new polynomial, since p |
(p

i

)
for all 1 ≤

i ≤ p − 1, and p2 ∤
( p

p−1
)

= p. Thus, f(Y + 1) is irreducible in Z[Y ], so f(X) is
irreducible in Z[X]. Of course, f(X) is therefore irreducible in Q[X] as before.
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§12 Algebraic integers

§12.1 Gaussian integers

Recall the ring of Gaussian integers Z[i] = {a+ bi : a, b ∈ Z} ≤ C. There is a norm
function N : Z[i] → Z≥0 given by a + bi 7→ a2 + b2, and N(xy) = N(x)N(y). This
norm is a Euclidean function, giving the Gaussian integers the structure of a Euclidean
domain and hence a PID and UFD. So the primes are the irreducibles in Z[i]. The units
in Z[i] are ±1,±i, since they are the only elements of unit norm.

Example 12.1
2 is not irreducible in Z[i], since it factors as (1 + i)(1 − i). 5 is not irreducible, since
it factors as (2 + i)(2 − i). These are nontrivial factorisations since the norms of the
factors are not unit length.

3 is a prime, since it is irreducible. Indeed,N(3) = 9, so if 3 were reducible it would
factor as ab where N(a) = N(b) = 3. But Z[i] has no elements of norm 3. Similarly,
7 is a prime.

Proposition 12.1
Let p ∈ Z be a prime. Then, the following are equivalent.

1. p is not prime in Z[i];

2. p = a2 + b2 for a, b ∈ Z;

3. p = 2 or p ≡ 1 mod 4.

Proof. (1) =⇒ (2): Let p = xy for x, y ∈ Z[i] not units. Then, p2 = N(p) =
N(x)N(y). Sincex, y are not units,N(x), N(y) > 1 and in particularN(x) = N(y) =
p. Writing x = a+bi for a, b ∈ Z, we have p = N(x) = a2 +b2, which is the condition
in (2).

(2) =⇒ (3): The only squares modulo 4 are 0 and 1. Since p ≡ a2 + b2 mod 4, we
have that p cannot be congruent to 3, modulo 4.

(3) =⇒ (1): We have already observed above that 2 is not prime in Z[i]. It hence
suffices to consider the case where p ≡ 1 mod 4. We have that

(
Z⧸pZ

)×
is cyclic

of order p − 1 by Theorem 9.1. Hence, if p ≡ 1 mod 4, we have that 4 | p − 1, and
hence

(
Z⧸pZ

)×
contains an element of order 4, i.e. ∃ x ∈ Z with x4 ≡ 1 mod p,

but x2 6≡ 1 mod pa. Then x2 ≡ −1 mod p, or in other words, p | (x2 + 1). But this
factorises as p | (x + i)(x − i). We can see that p ∤ x + i, p ∤ x − i, so p cannot be
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prime.
aOtherwise x would be order 2

Remark 31. The proof that (iii) implies (i) is entirely nontrivial. It required lots of theory
in order to reach the result, even though its statement did not require even the notion of
a complex number.

Theorem 12.1
The primes in Z[i] are, up to associates,

1. a + bi, where a, b ∈ Z and a2 + b2 = pa is a prime in Z with p = 2 or p ≡ 1
mod 4; and

2. the primes p in Z satisfying p ≡ 3 mod 4.
aPrevious theorem implies p not prime in Z[i], but a + bi 6= p and we care about a + bi.

Proof. First, we must check that all such elements are prime. For (1), note that
N(a+ bi) = p is prime, so if a+ bi = uv then either N(u) or N(v) = 1. Thus a+ bi
is irreducible, hence prime.
(2) follows from Proposition 12.1.

It now suffices to show that any prime in the Gaussian integers satisfies one of the
two above conditions. Let z be prime inZ[i]. We note that z is also irreducible. Now,
N(z) = zz, which is a factorisation of the norm into irreducibles.
N(z) a non-unit integer so let p be a prime in Z dividing N(z).
If p ≡ 3 mod 4, p is prime in Z[i]. As p | N(z) = zz, p | z or p | z so p is associate to
z or za. If p associate to z it is also associate to z by taking conjugates.
Otherwise, p = 2 or p ≡ 1 mod 4 and p = a2 + b2 = (a + bi)(a − bi) where a ± bi
are irreducible in Z[i] as they have norm p. So we have p = (a+ bi)(a− bi) | zz, so
z is an associate of a+ bi or a− bi by uniqueness of factorisation.
aIf two primes divide each other they must be associates.

Remark 32. In Theorem 12.1, if p = a2 +b2, a+bi and a−bi are not associate unless p = 2.
[(1 + i), (1 − i) are associates as (1 + i) = (1 − i)i if p = 2 so a+ bi, a− bi are.]

Corollary 12.1
An integer n ≥ 1 is the sum of two squares iff every prime factor p of n with p ≡ 3
mod 4 divides n to an even power.
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Proof. Suppose n = a2 + b2. So n = N(a ± bi). Factorising a ± bi into a product
of primes then n is a product of norms of primes in the Gaussian integers. By The-
orem 12.1, those norms are

1. the primes p ∈ Z with p 6≡ 3 mod 4; and

2. squares of primes p ∈ Z with p ≡ 3 mod 4.

The result follows.

Example 12.2
We can write 65 = 5 · 13 as the sum of two primes since 5, 13 ≡ 1 mod 4. We first
factorise 5 and 13 into primes in the Gaussian integers.

5 = (2 + i)(2 − i); 13 = (2 + 3i)(2 − 3i)

Thus, the factorisation of 65 into irreducibles in Z[i] is

65 = (2 + 3i)(2 + i)(2 − 3i)(2 − i)
= [(2 + 3i)(2 + i)][(2 + 3i)(2 + i)]
= N((2 + 3i)(2 − i))
= N(1 + 8i) = 12 + 82

This was dependent on the choice of grouping of terms. Alternatively,

65 = N((2 + i)(2 − 3i)) = N(7 + 4i) = 72 + 42

§12.2 Algebraic integers

Definition 12.1 (Algebraic)
A number α ∈ C is algebraic if α is a root of some nonzero polynomial f ∈ Q[X].

Definition 12.2 (Algebraic Integer)
α ∈ C is an algebraic integer if it is a root of some monic polynomial f ∈ Z[X].

Notation. Let R ≤ S, and α ∈ S. We write R[α] to denote the smallest subring of S
containing R and α. R[α] is the intersection of all subrings of S containing R and α.
Further, R[α] = Imφwhere φ : R[X] → S is the homomorphism g(X) 7→ g(α)1.

1Wemappolynomial g to g(α). The image is the smallest subring containingR andα as: g(X) = c ∈ R[X]
for c ∈ R and g(α) = c so R ⊂ Im φ; also g(X) = X ∈ R[X] so g(α) = α hence α ∈ Im φ. As we

58



Definition 12.3 (Minimal Polynomial)
Let α be an algebraic number. Consider the homomorphism φ : Q[X] → C where
g(X) 7→ g(α), Q[α] = Imφ. Since Q[X] is a a principal ideal domain, kerφ = (f)
for some f ∈ Q[X]. This ideal contains a nonzero element since α is an algebraic
number, hence f is nonzero. Multiplying f by a unit, we may assume f is monic
without loss of generality.

This unique f is known as the minimal polynomial of α.

Corollary 12.2
All minimal polynomials are irreducible.

Proof. By the isomorphism theorem, Q[X]⧸(f) ∼= Q[α] ≤ C. Any subring of a field
is an integral domain. Hence (f) is a prime ideal inQ[X], and hence f is irreducible.
In particular, this implies that Q[α] is a field.

Proposition 12.2
Let α be an algebraic integer, and f ∈ Q[X] be its minimal polynomial. Then f ∈
Z[X], and (f) = ker θ ◁ Z[X] where θ : Z[X] → C is given by g(X) 7→ g(α).

Remark 33. If α is an algebraic integer, then the polynomial in the definition can be taken
to be minimal without loss of generality. Z[X] is not a principal ideal domain, so the
previous argument cannot work verbatim.

Proof. Let f be the minimal polynomial of α. Let λ ∈ Q× such that λf has coeffi-
cients in Z and is primitive. Then λf(α) = 0, so λf ∈ ker θ.

Let g ∈ ker θ ◁ Z[X], so in particular g ∈ Z[X]. Then g ∈ kerφ, and hence λf | g in
Q[X]. By Lemma 11.2, λf | g in Z[X]. Thus, ker θ = (λf).

Now, since α is an algebraic integer, we know that there exists a monic polynomial
g ∈ ker θ such that g(α) = 0. Then λf | g in Z[X], so λ = ±1 as both f, g are monic.
Hence, f ∈ Z[X], and (λf) = (f) = ker θ.

Let α ∈ C be an algebraic integer. Then, applying the isomorphism theorem to θ,
Z[X]⧸(f) ∼= Z[α].

can add terms and multiply α by itself and any element in R, we can obtain any polynomial of α so
g(α) ∈ R[α] ∀ g ∈ R[X].
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Example 12.3
i,

√
2, −1+

√
3

2 , n
√
p have minimal polynomials X2 + 1, X2 − 2, X2 +X + 1, Xn − p.

Z[X]⧸(X2 + 1)
∼= Z[i]

Z[X]⧸(X2 − 2)
∼= Z

[√
2
]

Z[X]⧸(X2 +X + 1)
∼= Z

[
−1 +

√
−3

2

]
Z[X]⧸(Xn − p) ∼= Z[ n

√
p]

Corollary 12.3
If α is an algebraic integer, and α ∈ Q, then α ∈ Z.

Proof. Let α 6= 0, since the casewhere α = 0 is trivial. Then theminimal polynomial
ofα has coefficients inZ. Sinceα is rational, theminimal polynomial isX−α. Hence
α ∈ Z as it is a coefficient of the minimal polynomial.
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§13 Noetherian rings

§13.1 Definition

Recall the definition of a Noetherian ring.

Definition 13.1 (Noetherian Ring)
A ring R is Noetherian if, for all sequences of nested ideals I1 ⊆ I2 ⊆ · · · , there
exists N ∈ N s.t. for all n > N , In = In+1.

Lemma 13.1
LetR be a ring. ThenR satisfies the ascending chain condition (soR is Noetherian)
iff all ideals in R are finitely generated.

We have already shown that principal ideal domains are Noetherian, since they satisfy
this ‘ascending chain’ condition. This now will immediately follow from the lemma.

Proof. (⇐=): Let I1 ⊆ I2 ⊆ · · · be an ascending chain of ideals. Consider I =⋃∞
i=1 Ii, which is an ideal. By assumption, I is finitely generated, so I = (a1, . . . , an).

These elements belong to a nested union of ideals. In particular, we can choose
N ∈ N such that all ai are contained within IN . Then, for n ≥ N , we find

(a1, . . . , an) ⊆ IN ⊆ In ⊆ I = (a1, . . . , an)

So the inclusions are all equalities, so IN = In ∀ n ≥ N .

( =⇒ ): Suppose that there exists an ideal J ◁Rwhich is not finitely generated. Let
a1 ∈ J . Then since J is not finitely generated, (a1) ⊂ J . We can therefore choose
a2 ∈ J \ (a1), and then (a1) ⊂ (a1, a2) ⊂ J . Continuing inductively, we contradict
the ascending chain condition.

§13.2 Hilbert’s basis theorem

Theorem 13.1 (Hilbert’s Basis Theorem)
Let R be a Noetherian ring. Then R[X] is Noetherian.

Proof. Suppose there exists an ideal J◁R[X] that is not finitely generated. Let f1 ∈ J
be an element of minimal degree. Then (f1) ⊊ J . So we can choose f2 ∈ J \ (f1),
which is also of minimal degree, then (f1, f2) ⊊ J . Inductively we can construct
a sequence f1, f2, . . . , where the degrees are non-decreasing. Let ai be the leading
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coefficient of fi, for all i. We then obtain a sequence of ideals (a1) ⊆ (a1, a2) ⊆
(a1, a2, a3) ⊆ · · · in R. Since R is Noetherian, there exists m ∈ N such that for all
n ≥ m, we have an ∈ (a1, . . . , am). Let am+1 =

∑m
i=1 λiai, since am+1 lies in the

ideal (a1, . . . , am). Now we define

g(X) =
m∑

i=1
λiX

deg fm+1−deg fifi

The degree of g is equal to the degree of fm+1, and they have the same leading
coefficient am+1. Then, consider fm+1 − g ∈ J and deg(fm+1 − g) < deg fm+1. By
minimality of the degree of fm+1, fm+1−g ∈ (f1, . . . , fm), hence fm+1 ∈ (f1, . . . , fm).
This contradicts the choice of fm+1, so J is in fact finitely generated.

Corollary 13.1
Z[X1, . . . , Xn] is Noetherian. Similarly, F [X1, . . . , Xn] is Noetherian for any field F ,
since fields satisfy the ascending chain condition.

Example 13.1
Let R = C[X1, . . . , Xn]. Let V ⊆ Cn be a subset of the form

V = {(a1, . . . , an) ∈ Cn : f(a1, . . . , an) = 0, ∀f ∈ F}

where F ⊆ R is a (possibly infinite) set of polynomials. Such a set is referred to as
an algebraic variety. Let

I =
{

m∑
i=1

λifi : m ∈ N, λi ∈ Ri, fi ∈ F

}

We can check that I ◁ R. Since R is Noetherian, I = (g1, . . . , gr). Hence

V = {(a1, . . . , an) ∈ Cn : g(a1, . . . , an) = 0, ∀g ∈ I}

Lemma 13.2
Let R be a Noetherian ring, and I ◁ R. Then R⧸I is Noetherian.

Proof. Let J ′
1 ⊆ J ′

2 ⊆ · · · be a chain of ideals in R⧸I . By the ideal correspondence,
J ′

i corresponds to an ideal Ji that contains I , so J ′
i = Ji⧸I . So J1 ⊆ J2 ⊆ · · · is

a chain of ideals in R. Since R is Noetherian, there exists N ∈ N such that for all
n ≥ N , we have JN = Jn, and so J ′

N = J ′
n. Hence R⧸I satisfies the ascending chain
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condition.

Example 13.2
The ring of Gaussian integers Z⧸(X2 + 1) is Noetherian.

Example 13.3
If R[X] is Noetherian, then R[X]⧸(X) ∼= R is Noetherian. This is a converse to the
Hilbert basis theorem.

Example 13.4
The ring of polynomials in countably many variables is not Noetherian.

Z[X1, X2, . . . ] =
⋃

n∈N
Z[X1, . . . , Xn]

In particular, consider the ascending chain (X1) ⊊ (X1, X2) ⊊ (X1, X2, X3) ⊊ · · · .

Example 13.5
Let R = {f ∈ Q[X] : f(0) ∈ Z} ≤ Q[X]. Even though Q[X] is Noetherian, R is not.
Indeed, consider (X) ⊂

(
1
2X
)

⊂
(

1
4X
)

⊂
(

1
8X
)

⊂ · · · . These inclusions are strict,
since 2 ∈ R is not a unit.
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Part III
Modules
§14 Modules

§14.1 Definitions

Definition 14.1 (Module)
Let R be a ring. Amodule over R is a triple (M,+, ·) consisting of a setM and two
operations + : M ×M → M and • : R×M → M , that satisfy

1. (M,+) is an abelian group with identity 0 = 0M ;

2. (r1 + r2) ·m = r1 ·m+ r2 ·m;

3. r · (m1 +m2) = r ·m1 + r ·m2;

4. r1 · (r2 ·m) = (r1 · r2) ·m;

5. 1R ·m = m;

Remark 34. Closure is implicitly required by the types of the + and · operations.

Example 14.1
A module over a field is precisely a vector space.

Example 14.2
A Z-module is precisely the same as an abelian group, since

· : Z ×A → A; n · a =



a+ · · · + a︸ ︷︷ ︸
n times

if n > 0

0 if n = 0

−

a+ · · · + a︸ ︷︷ ︸
−n times

 if n < 0

Example 14.3
LetF be a field, and V be a vector space overF . Letα : V → V be an endomorphism.
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We can turn V into an F [X]-module by

• : F [X] × V → V ; f · v = (f(α))(v)

E.g. (X2 + 1) · v = (α2 + 1V )(v).

Note that the structure of the F [X]-module depends on the choice of α. We can
write V = Vα to disambiguate.

Example 14.4
For any ring R, we can consider Rn as an R-module via

r · (r1, . . . , rn) = (r · r1, . . . , r · rn)

In particular, the case n = 1 shows that any ring R can be considered an R-module
where the scalar multiplication in the ring and the module agree.

Example 14.5
For an ideal I ◁ R, we can regard I as an R-module, since I is preserved under
multiplication by elements inR. The quotient ringR⧸I is also anR-module, defining
multiplication as r · (s+ I) = rs+ I .

Example 14.6
Let φ : R → S be a ring homomorphism. Then any S-module can be regarded as
an R-module. We define r · m = φ(r) · m. In particular, this applies when R is a
subring of S, and φ is the inclusion map. So any module over a ring can be viewed
as a module over any subring.

Definition 14.2 (Submodule)
LetM be an R-module. Then N ⊆ M is an R-submodule ofM , written N ≤ M , if
(N,+) ≤ (M,+), and rn ∈ N for all r ∈ R and n ∈ N .

Example 14.7
By considering R as an R-module, a subset of R is an R-submodule iff it is an ideal.

Example 14.8
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If R = F is a field, then a module is equivalent to a vector space and a submodule
a vector subspace.

Definition 14.3 (Quotient)
Let N ≤ M be R-modules. Then, the quotient M⧸N is defined as the quotient of
groups under addition, and with scalar multiplication defined as r · (m + N) =
rm+N . This is well-defined, sinceN is preserved under scalar multiplication. This
makesM⧸N an R-module.

Remark 35. Submodules are analogous both to subrings and to ideals.

Definition 14.4 (Homomorphism)
Let M,N be R-modules. Then f : M → N is a R-module homomorphism if it
is a homomorphism of (M,+) and (N,+), and scalar multiplication is preserved:
f(r ·m) = r · f(m) ∀ r ∈ R,m ∈ M .

Definition 14.5 (Isomorphism)
An R-module isomorphism is an R-module homomorphism that is a bijection.

Example 14.9
If R = F is a field, F -module homomorphisms are exactly linear maps.

Theorem 14.1 (First Isomorphism Theorem)
Let f : M → N be an R-module homomorphism. Then

1. ker f = {m ∈ M : f(m) = 0} ≤ M ;

2. Im f = {f(m) ∈ N : m ∈ M} ≤ N ;

3. M⧸ker f ∼= Im f .

Proof. Similar to before, left as an exercise.

Theorem 14.2 (Second Isomorphism Theorem)
Let A,B ≤ M be R-submodules. Then

66



1. A+B = {a+ b : a ∈ A, b ∈ B} ≤ M ;

2. A ∩B ≤ M ;

3. A⧸A ∩B
∼= (A+B)⧸B.

Proof. Apply first iso thm to the composite mapA → M → M⧸B by a 7→ a 7→ a+B.
Left as an exercise.

For N ≤ M , there is a bijection between submodules of M⧸N and submodules of M
containing N .

Theorem 14.3 (Third Isomorphism Theorem)
For N ≤ L ≤ M are R-submodules, then

M/N⧸L/N ∼= M⧸L

Note that these results apply to vector spaces; for example, the first isomorphism the-
orem immediately gives the rank-nullity theorem.

§14.2 Finitely generated modules

Definition 14.6 (Generated Submodule)
Let M be an R-module. If m ∈ M , then we write Rm = {rm : r ∈ R}. This is an
R-submodule ofM , known as the submodule generated bym.

Definition 14.7 (Sum of Submodules)
If A,B ≤ M , we can define A + B = {a+ b : a ∈ A, b ∈ B}, known as the sum of
submodules. In particular, this sum is commutative.

Definition 14.8 (Cyclic)
M is cyclic ifM = Rm for somem ∈ M .

Definition 14.9 (Finitely Generated)
AmoduleM is finitely generated if it is the sum of finitelymany cyclic submodules.
In other words,M = Rm1 + · · · +Rmn.
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This is the analogue of finite dimensionality in linear algebra.

Lemma 14.1
M is cyclic ⇐⇒ M ∼= R⧸I for some I ◁ R.

Proof. ( =⇒ ): SupposeM = Rm, then there is a surjectiveR-module homomorph-
ism

R → M

r 7→ rm.

Its kernel is an R-submodule of R, i.e. an ideal. First iso thm implies that R⧸I ∼= M .

(⇐=): R⧸I is generated as an R-module by 1R + I .

Lemma 14.2
An R-module M is finitely generated iff there exists a surjective R-module homo-
morphism f : Rn → M for some n.

Proof. ( =⇒ ): We have M = Rm1 + · · · + Rmn. We define f : Rn → M by
(r1, . . . , rn) 7→ r1m1 + · · · + rnmn. This is surjective asM = Rm1 + · · · +Rmn also
you can check other properties to find it is a R-module homomorphism.

(⇐=): Let ei = (0, . . . , 1, . . . , 0) be the element of Rn with all entries zero except
for 1 in the ith place. Given f , let mi = f(ei). Then, since f is surjective, any
element m ∈ M is contained in the image of f , so is of the form f(r1, . . . , rn) =
f(
∑n

i=1 riei) =
∑n

i=1 rif(ei) =
∑n

i=1 rimi. ThusM = Rm1 + · · · = Rmn.

Corollary 14.1
Let N ≤ M be a R-submodule. If M is finitely generated then M⧸N is finitely
generated.

Proof. There exists a surjective R-module homomorphism f : Rn → M . Then q ◦ f ,
where q is the quotient map, is also a surjective homomorphism. SoM⧸N is finitely
generated.

Example 14.10
It is not always the case that a submodule of a finitely generated module is finitely
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generated. Let R be a non-Noetherian ring, and I an ideal in R that is not finitely
generated (in the ring sense). R is a finitely generated R-module, since R1 = R. I
is a submodule of R, which is not finitely generated (in the module sense).

Remark 36. IfR is Noetherian, it is always the case that submodules of finitely generated
R-modules are finitely generated (Sheet 4).

Lemma 14.3
Let R be an integral domain. Every submodule of a cyclic R-module is cyclic iff R
is a PID.

Proof. ( =⇒ ): R is a cyclic R-module. Saying its submodule are cyclic precisely
means that every ideal is principal.

(⇐=): IfM is a cyclic R-module its isomorphic to R⧸I , I ◁ R by Lemma 14.1. Any
submodule ofR⧸I is of the form J⧸I for some ideal J ◁R and I ⊆ J . R a PID implies
J is principal so J⧸I is cyclic.

§14.3 Torsion

Definition 14.10 (Torsion)
LetM be an R-module.

1. m ∈ M is torsion if there exists 0 6= r ∈ R such that rm = 0;

2. M is a torsion module if every element is torsion;

3. M is a torsion-free module if 0 is the only torsion element.

Example 14.11
The torsion elements in a Z-module (which is an abelian group) are precisely the
elements of finite order. If F is a field, any F -module is torsion-free.

§14.4 Direct sums

Definition 14.11 (Direct Sum)
Let M1, . . . ,Mn be R-modules. Then the direct sum of M1, . . . ,Mn, written M1 ⊕
· · · ⊕ Mn, is the setM1 × · · · × Mn, with the operations of addition and scalar mul-
tiplication defined componentwise. We can show that the direct sum of (finitely
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many) R-modules is an R-module.

Example 14.12
Rn = R⊕ · · · ⊕R, where we take the direct sum of n copies of R.

Lemma 14.4
LetM =

⊕n
i=1Mi, and for eachMi, letNi ≤ Mi. ThenN =

⊕n
i=1Ni is a submodule

ofM . Further,

M⧸N =

n⊕
i=1

Mi⧸ n⊕
i=1

Ni

∼=
n⊕

i=1

Mi⧸Ni

Proof. First, we can see that thisN is a submodule. Applying the first isomorphism
theorem to the surjective R-module homomorphism M →

⊕n
i=1

Mi⧸Ni
given by

(m1, . . . ,mn) 7→ (m1 + N1, . . . ,mn + Nn), the result follows as required, since the
kernel is N .

§14.5 Free modules

Definition 14.12 (Independent)
Letm1, . . . ,mn ∈ M . The set {m1, . . . ,mn} is independent if∑n

i=1 rimi = 0 implies
that the ri are all zero.

Definition 14.13 (Generates Freely)
A subset S ⊆ M generatesM freely if:

1. S generatesM , so for allm ∈ M , we can find finitely many entries si ∈ S and
coefficients ri ∈ R such thatm =

∑k
i=1 risi;

2. any function ψ : S → N , where N is an R-module, extends to an R-module
homomorphism θ : M → N .

Remark 37. In (ii), such an extension θ is always unique if it exists, by (i).

Definition 14.14 (Free)
An R-moduleM freely generated by some subset S ⊆ M is called free. We say that
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S is a free basis forM .

Remark 38. Free bases in the study of modules are analogous to bases in linear algebra.
All vector spaces are free modules, but not all modules are free.

Proposition 14.1
For a finite subset S = {m1, . . . ,mn} ⊆ M , the following are equivalent.

1. S generatesM freely;

2. S generatesM and S is independent;

3. Every element of M can be written uniquely as r1m1 + · · · + rnmn for some
ri ∈ R;

4. TheR-module homomorphismRn → M given by (r1, . . . , rn) 7→ r1m1 + · · · +
rnmn is bijective, so is an isomorphism.

Proof. Not all implications are shown, but they are similar to arguments found in
Part IB Linear Algebra.

(i) =⇒ (ii) Let S generate M freely. Suppose S is not independent. Then there
exist ri such that∑n

i=1 rimi = 0 but not all ri are zero. Let rj 6= 0. Since S generates
M freely, consider the module homomorphism ψ : S → R given by

ψ(mi) =
{

1 if i = j

0 otherwise

This extends to a R-module homomorphism θ : M → R. Then

0 = θ(0) = θ

(
n∑

i=1
rimi

)
=

n∑
i=1

riθ(mi) = rj 6= 0

This is a contradiction, so S is independent.

To show (ii) =⇒ (iii), it suffices to show uniqueness. If there exist two ways to
write an element as a linear combination, consider their difference to find a contra-
diction from (ii).

We can show (iii) =⇒ (i). Then it remains to show (iii) ⇐⇒ (iv).

Example 14.13
A non-trivial finite abelian group is not a free Z-module.
This is because given non-trivial element x, we know ∃nx = 0 for some n, e.g. n is
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the order of the group. So x cannot be in an independent set.

Example 14.14
The set {2, 3} generates Z as a Z-module. This is not a free basis, since they are not
independent: 2 · 3 − 3 · 2 = 0. Furthermore no subset is a free basis, {2}, {3} do not
generate.

This is different to vector spaces, where we can always construct a basis from a
subset of a spanning set.

Proposition 14.2 (Invariance of Dimension)
Let R be a nonzero ring. If Rm ∼= Rn as R-modules, thenm = n.

Proof. First we introduce a general construction. Let I ◁R, andM anR-module. We
define IM = {

∑
aimi : ai ∈ I,mi ∈ M} ≤ M . Since I is an ideal, we can show that

IM is a submodule ofM . The quotient moduleM⧸IM is an R-module, but we can
also show that it is an R⧸I-module, by defining scalar multiplication as

(r + I) · (m+ IM) = (r ·m+ IM)

We can check that this is well-defined; this follows from the fact that for b ∈ I ,
b · (m+ IM) = bm+ IM , but b ∈ I so bm ∈ IM .

Now, suppose that Rm ∼= Rn. Then let I ◁ R be a maximal ideal in Ra. By
Lemma 14.4, we find an isomorphism of R⧸I-modules(

R⧸I
)m ∼= Rm

⧸IRm ∼= Rn
⧸IRn ∼=

(
R⧸I

)n

This is an isomorphism of vector spaces overR⧸I which is a field, since I is maximal.
Hence, using the corresponding result from linear algebra, n = m.
aWe can prove the existence of such an ideal under the assumption of the axiom of choice, and in
particular using Zorn’s lemma. With Noetherian Rings this is quite easy to prove by just picking
an ideal and if its not maximal then there is one containing it and so on till we have a constant
ideal and so it must be maximal

72



§15 The structure theorem and applications

We will assume that R is a Euclidean domain in this section, and let φ be a Euclidean
function for R.

§15.1 Row and column operations

We will consider anm× nmatrix with entries in R.

Definition 15.1 (Elementary Row Operations)
The elementary row operations on a matrix are

1. (ER1) Add λ ∈ R times the jth row to the ith row, where i 6= j;

2. (ER2) Swap the ith row and the jth row;

3. (ER3) Multiply the ith row by u ∈ R×.

Remark 39. Each of these operations can be realised by left-multiplication by somem×m
matrix. These operations are all invertible, so their matrices are all invertible.

We can define elementary column operations in an analogous way (EC1-3), using right-
multiplication by an n× nmatrix instead.

Definition 15.2 (Equivalent)
Two m × n matrices A,B are equivalent if there exists a sequence of elementary
row and column operations that transforms one matrix into the other. If they are
equivalent, then there exist invertible matrices P,Q such that B = QAP .

Definition 15.3 (Minor)
A k × k minor of an m × n matrix A is the determinant of a k × k submatrix of A,
which is a matrix of A produced by removingm− k rows and n− k columns.

Definition 15.4 (Fitting Ideal)
The kth Fitting ideal Fitk(A) ◁ R is the ideal generated by the k × k minors of A.

Lemma 15.1
The kth fitting ideal of a matrix is invariant under elementary row and column op-
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erations, i.e. for equivalent A,B Fitk(A) = Fitk(B) ∀ k.

Proof. It suffices by symmetry to show that the elementary row operations do not
change the Fitting ideal.

For the first elementary row operation, ER1, on a matrix A, suppose we add λ ∈ R
multiplied by the jth row to the ith row, yielding a matrix A′. In particular, aik 7→
aik + λajk for all k. Let C be a k × k submatrix of A and C ′ the corresponding
submatrix of A′.

If row i was not chosen in C, then C and C ′ are the same matrix. Hence detC =
detC ′.

If row i and row j were both chosen in C, we have that C,C ′ differ by a row opera-
tion. Since the determinant is invariant under this elementary row operations thus
detC = detC ′.

If row iwas chosen but row j was not chosen, by expanding the determinant along
the ith row, we find

detC ′ = detC ± λ detDa

where we can show thatD is a k×k submatrix ofA that includes row j but not row
i. By definition, detD ∈ Fitk(A) and detC ∈ Fitk(A), so certainly detC ′ ∈ Fitk(A).
Hence Fitk(A′) ⊆ Fitk(A). By the invertibility of the elementary row operations,
Fitk(A′) ⊇ Fitk(A).

The proofs for the other elementary row operations are left as an exercise.
aExpanding the det along the ith row is (ai1 + λaj1) det E − (ai2 + λaj2) det F + · · · ± (ain +

λajn) det Z = (ai1 det E −ai2 det F + · · ·±ain det Z)+λ(aj1 det E −aj2 det F + · · ·±ajn det Z) =
det C ± λ det D.

§15.2 Smith normal form

Theorem 15.1 (Smith Normal Form)
An m × n matrix A = (aij) over a Euclidean domain R is equivalent to a matrix of
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the form, with di 6= 0

d1
. . .

dt

0
. . .


; d1 | d2 | · · · | dt

The di are known as invariant factors, and they are unique up to associates.

Proof. IfA = 0, thematrix is already in Smith normal form. Otherwise, we can swap
columns and rows such that a11 6= 0. We will reduce φ(a11) as much as possible
until it divides every other element in the matrix, using the following algorithm.

STEP 1: If a11 ∤ a1j for some j ≥ 2, then a1j = qa11 + r where q, r ∈ R and φ(r) <
φ(a11). We can subtract q multiplied by column 1 from column j. Swapping these
columns leaves a11 = r.

STEP 2: If a11 ∤ ai1 for some i ≥ 2, then repeat the above process using row opera-
tions.

STEP 1 and 2 decrease φ(a11), so we repeat until a11 | a1j , ai1 for all j ≥ 2, i ≥ 2.
We only need to repeat finitely many times as the Euclidean function takes values
in Z≥0 and φ(a11) strictly decreases in each iteration.

Now, we can subtract multiples of the first row to clear out the first column and
multiples of the first column to clear out the first row to give

A =


a11 0 · · · 0
0
... A′

0


STEP 3: If a11 ∤ aij for i, j ≥ 2, then add the ith row to the first row. There is now an
element in the first row, aij , that a11 does not divide. We can then perform column
operations as in step 1 to decrease φ(a11).

We will then restart the algorithm. After finitely many steps, this algorithm will
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terminate and a11 will divide all elements aij of the matrix.

A =


a11 0 · · · 0
0
... A′

0

 ; a11 ≡ d1 | aij

We can now apply the algorithm toA′, since column and row operations not includ-
ing the first row or column do not change whether a11 | aij .

We now demonstrate uniqueness of the invariant factors. Suppose A has Smith
normal formwith invariant factors di where d1 | · · · | dt. Then, for all k, Fitk(A) can
be evaluated in Smith normal form by invariance of the Fitting ideal under row and
column operations. Hence Fitk(A) = (d1d2 · · · dk) ◁ R. Thus, the product d1 · · · dk

depends only onA, and is unique up to associates. Cancelling, we can see that each
di depends only on A, up to associates.

Example 15.1
Consider the matrix over Z given by

A =
(

2 −1
1 2

)

Using elementary row and column operations,(
2 −1
1 2

)
c1 7→c1+c2−−−−−−→

(
1 −1
3 2

)
c2 7→c1+c2−−−−−−→

(
1 0
3 5

)
r2 7→−3r1+r2−−−−−−−−→

(
1 0
0 5

)

This is in Smith normal form as 1 | 5.

Alternatively, (d1) is all the 1 × 1 minors, i.e. (2,−1, 1, 2) = (1). So d1 = ±1. Further,
(d1d2) = (detA) = (5). So d1d2 = ±5 and hence d2 = ±5.

§15.3 The structure theorem

Lemma 15.2
Let R be a Euclidean domain with Euclidean function φ (or, indeed, a principal
ideal domain). Any submodule of the free module Rm is generated by at most m
elements.

Proof. Them = 1 case was lemma 14.3.
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Let N ≤ Rm. Consider

I = {r ∈ R : ∃ r2, . . . , rm ∈ R, (r, r2, . . . , rm) ∈ N}

SinceN is a submodule, this is an ideal. SinceR is a principal ideal domain, I = (a)
for some a ∈ R. Let n = (a, a2, . . . , am) ∈ N . For (r1, . . . , rm) ∈ N , we have r1 = ra
for some r. Hence (r1, . . . , rm) − rn = (0, r2 − ra2, . . . , rm − ram), which lies in
N ′ = N∩

(
{0} ×Rm−1) ≤ Rm−1, henceN = Rn+N ′. By induction,N ′ is generated

by n2, . . . , nm, hence {n, n2, . . . , nm} generate N .

Theorem 15.2
LetR be a Euclidean domain, andN ≤ Rm. Then there is a free basis x1, . . . , xm for
Rm such that N is generated by d1x1, . . . , dtxt for some di ∈ R and t ≤ m, and such
that d1 | · · · | dt.

Proof. By Lemma 15.2, we have N = Ry1 + · · · + Ryn for some yi ∈ Rm for some
n ≤ m. Each yi belongs to Rm so we can form the m × n matrix A which has
columns yi. A is equivalent to a matrix A′ in Smith normal form with invariant
factors d1 | · · · | dt.

A′ is obtained from A by elementary row and column operations. Switching row
i and row j in A corresponds to reassigning the standard basis elements ei and
ej to each other. Adding a multiple of row i to row j corresponds to replacing
e1, . . . , em with a linear combination of these basis elements which is a free basis.
In general, each row operation simply changes the choice of free basis used for Rm.
Analogously, each column operation changes the set of generators yi for N .

Hence, after applying these row and column operations, the free basis ei of Rm is
converted into x1, . . . , xm, and N is generated by d1x1, . . . , dtxt.

Theorem 15.3 (Structure Theorem for finitely generated modules over Euclidean do-
mains)
Let R be a Euclidean domain, andM a finitely generated module over R. Then

M ∼= R⧸(d1) ⊕ · · · ⊕R⧸(dt) ⊕R⊕ · · · ⊕R︸ ︷︷ ︸
k copies

∼= R⧸(d1) ⊕ · · · ⊕R⧸(dt) ⊕Rk

for some 0 6= di ∈ R and d1 | · · · | dt, and where k ≥ 0. The di are called invariant
factors.

77



Proof. SinceM is finitely generated, there exists a surjectiveR-module homomorph-
ism φ : Rm → M for some m by Lemma 14.1. By the first isomorphism theorem,
M ∼= Rm

⧸kerφ. By Theorem 15.2, there exists a free basis x1, . . . , xm for Rm such
that kerφ ≤ Rm is generated by d1x1, . . . , dtxt where d1 | · · · | dt. Then,

M ∼=

R⊕ . . . R︸ ︷︷ ︸
m copies

d1R⊕ · · · ⊕ dtR⊕ 0 ⊕ · · · ⊕ 0︸ ︷︷ ︸
m−t copies

∼= R⧸(d1) ⊕ · · · ⊕R⧸(dt) ⊕R⊕ · · · ⊕R︸ ︷︷ ︸
m−t copies

by Lemma 14.4

Remark 40. After deleting those di which are units, the invariant factors ofM are unique
up to associates. The proof is omitted.

Corollary 15.1
Let R be a Euclidean domain. Then any finitely generated torsion-free module is
free.

Proof. Since M is torsion-free, there are no submodules of the form R⧸(d) with d
nonzero, since then multiplying an element ofM by d would give zero. Hence, by
the structure theorem,M ∼= Rm for somem.

Example 15.2
ConsiderR = Z, and the abelian groupG = 〈a, b〉 subject to the relations 2a+ b = 0
and −a + 2b = 0, so G ∼= Z2

⧸N where N is the Z-submodule of Z2 generated by
(2, 1) and (−1, 2). Consider

A =
(

2 −1
1 2

)

which has Smith normal form d1 = 1 and d2 = 5. Hence, by changing basis for Z2,
we can let N be generated by (1, 0) and (0, 5). Hence,

G ∼= Z ⊕ Z⧸Z ⊕ 5Z ∼= Z⧸5Z

78



§15.4 Primary decomposition theorem

More generally, applying the structure theorem to Z-modules, we obtain the structure
theorem for finitely generated abelian groups:

Theorem 15.4 (Structure Theorem for finitely generated abelian groups)
Let G be a finitely generated abelian group. Then

G ∼= Cd1 × · · · × Cdt × Zr

where d1 | · · · | dt in Z, and r ≥ 0.

Proof. Take R = Z in structure theorem for modules. We have replaced the sub-
module notation Z⧸nZ and ⊕ with the group notation Cn and ×.

Remark 41. The special case of G finite means r = 0 and was quoted as Theorem 6.2.

We have also seen that any finite abelian group can be written as a product of cyclic
groups of prime power order. This also has a generalisation for modules. The previous
result relied on the lemma Cmn

∼= Cm × Cn where m and n are coprime. There is an
analogous result for principal ideal domains.

Lemma 15.3
Let R be a principal ideal domain, and a, b ∈ R with gcd = 1. Then, treating these
quotients as R-modules,

R⧸(ab) ∼= R⧸(a) ⊕R⧸(b)

Note. The case of R = Z was Lemma 6.1.

Proof. Since R is a principal ideal domain, (a, b) = (d) for some d ∈ R. The greatest
common divisor of a, b is a unit, so d is a unit, giving (a, b) = R. Hence, there exist
r, s ∈ R such that ra+ sb = 1. This is a generalisation of Bézout’s theorem.

Now,wedefine anR-module homomorphismψ : R → R⧸(a)⊕
R⧸(b) byψ(x) = (x+

(a), x+(b)). Then ψ(sb) = (sb+(a), sb+(b)) = (1−ra+(a), sb+(b)) = (1+(a), (b)),
and similarly ψ(ra) = ((a), 1 + (b)). Hence, ψ(sbx+ ray) = (x+ (a), y+ (b)) so ψ is
surjective.

Clearly we have (ab) ⊂ kerψ, so it suffices to show the converse. If x ∈ kerψ, then
x ∈ (a) and x ∈ (b), so x ∈ (a) ∩ (b). Since x = x(ra+ sb) = r (ax)

∈(ab)

+s (bx)
∈(ab)

, x ∈ (ab).
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Hence kerψ = (ab), and the result follows from the first isomorphism theorem for
modules.

Lemma 15.4 (Primary Decomposition Theorem)
Let R be a Euclidean domain andM a finitely generated R-module. Then

M ∼= R⧸(pn1
1 ) ⊕ · · · ⊕R⧸(pnk

k

)⊕Rm

where the quotients are considered as R-modules, where pi are primes in R, which
are not necessarily distinct, and wherem ≥ 0.

Proof. By the structure theorem,

M ∼= R⧸(d1) ⊕ · · · ⊕R⧸(dt) ⊕R⊕ · · · ⊕R︸ ︷︷ ︸
m copies

∼= R⧸(d1) ⊕ · · · ⊕R⧸(dt) ⊕Rm

where d1 | · · · | dt. So it suffices to show that eachR⧸(di) can be written as a product
of factors of the form R⧸(pnj

j ). Since R is a unique factorisation domain and a prin-
cipal ideal domain, di can be written as a product upα1

1 · · · pαr
r where u is a unit and

the pj are pairwise non-associate primes. By Lemma 15.3,

R⧸(di)
∼= R⧸(pα1

1 ) ⊕ · · · ⊕R⧸(pαr
r )

§15.5 Rational canonical form

See tartarus for a good explainer of what F [X] modules are and what is going on.

Let V be a vector space over a field F , and α : V → V be a linear map. Let Vα denote the
F [X]-module V where scalar multiplication, F [X] × V → V , is defined by (f(X), v) 7→
f(X) · v = f(α)(v).

Lemma 15.5
If V is finite-dimensional as a vector space, then Vα is finitely generated as an F [X]-
module.

Proof. Consider a basis v1, . . . , vn of V , so v1, . . . , vn generate V as anF -vector space.
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Then, these vectors generate Vα as an F [X]-module, since F ≤ F [X]a.
aAny element in V can be written as

∑
λivi for λi ∈ F . As F ≤ F [X], λi ∈ F [x] so any element in

V is a linear combination of the vi in F [X].

Example 15.3
Suppose Vα

∼= F [X]⧸(Xn) as an F [X]-module. Then, 1, X,X2, . . . , Xn−1 is a basis

for F [X]⧸(Xn) as an F -vector space. With respect to this basis, α has the matrix
form 

0 0 0 · · · 0 0
1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
... . . . ...

...
0 0 0 · · · 1 0


(∗)

Example 15.4
Suppose Vα

∼= F [X]⧸(X − λ)n as an F [X]-module. Consider the basis 1, X−λ, (X−

λ)2, . . . , (X−λ)n−1 forF [X]⧸(X − λ)n as anF -vector space. Here,α−λ idhasmatrix
(∗) from the previous example. Hence, α has matrix (∗) + λI .

Example 15.5
Suppose Vα

∼= F [X]⧸(f) where f ∈ F [X] as an F [X]-module, such that f is monic.
Let

f(X) = Xn + an−1X
n−1 + · · · + a0

With respect to basis 1, X, . . . ,Xn−1, α has matrix

C(f) =



0 0 0 · · · 0 −a0
1 0 0 · · · 0 −a1
0 1 0 · · · 0 −a2
0 0 1 · · · 0 −a3
...

...
... . . . ...

...
0 0 0 · · · 1 −an−1


since f is monic and the last column represents Xn. The above matrix is known as
the companion matrix of the monic polynomial.
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Theorem 15.5 (Rational canonical form)
Let F be a field, V be a finite-dimensional F -vector space, and α : V → V be a linear
map. Then the F [X]-module Vα decomposes as

Vα
∼= F [X]⧸(f1) ⊕ · · · ⊕ F [X]⧸(ft)

for some monic polynomials fi ∈ F [X], and f1 | · · · | ft. Moreover, with respect to
a suitable basis, α has matrix

C(f1)
C(f2)

. . .
C(ft)

 (∗∗)

Proof. We know that Vα is finitely generated as an F [X]-module, since V is finite-
dimensional by Lemma 15.5. Since F [X] is a Euclidean domain, the structure the-
orem applies, and

Vα
∼= F [X]⧸(f1) ⊕ · · · ⊕ F [X]⧸(ft) ⊕ F [X]m

for some m, where f1 | · · · | ft. Since V is finite-dimensional as an F vector space,
m = 0 as F [X] is infinite-dimensional. As F is a field, wlog we may multiply each
fi by a unit to ensure that they are monic.

Then, using the previous example, we can construct the companion matrices for
each polynomial and obtain the matrix as required.

Remark 42. 1. If α is represented by an n× nmatrix A, there exists a change of basis
matrix P such that PAP−1 has form (∗∗) as stated in the theorem. Any square
matrix over a field is similar to (∗∗).

2. Note further that (∗∗) can be used to find the minimal and characteristic polyno-
mials of α; the minimal polynomial is ft as if fi | fj then fj = 0 =⇒ fi = 0. So
ft = 0 =⇒ f1 = f2 = · · · = ft−1 = 0.

3. The characteristic polynomial is f1 · · · ft.

4. In particular, the minimal polynomial divides the characteristic polynomial, and
this implies the Cayley-Hamilton theorem.

Example 15.6
Consider dimV = 2. Then, ∑deg fi = 2, so there are two cases: one polynomial
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of degree two, or two polynomials of degree one. Consider Vα
∼= F [X]⧸(X − λ) ⊕

F [X]⧸(X − µ). Since one of the fi must divide the other, we have λ = µ. If we have

one polynomial of degree two, we have Vα
∼= F [X]⧸(f), where f is the characteristic

polynomial of α.

Corollary 15.2
LetA,B be invertible 2 × 2 non-scalar matrices over a field F . ThenA,B are similar
iff their characteristic polynomials are equal.

Proof. ( =⇒ ): If A,B are similar they have the same characteristic polynomial,
which is proven in Part IB Linear Algebra.

(⇐=): If thematrices are non-scalar, themodules Vα, Vβ are of the form F [X]⧸(f) by
the previous example, so they are both similar to the companionmatrix of f , where
f is the characteristic polynomial of A or B.

Definition 15.5 (Annihilator)
The annihilator of an R-moduleM is

AnnR(M) = {r ∈ R : ∀m ∈ M, rm = 0} ◁ R

Example 15.7
Let I ◁ R. Then the annihilator of R⧸I is AnnR

(
R⧸I

)
= I .

Example 15.8
Let A be a finite abelian group. Then, considering A as a Z-module, AnnZ(A) = (e)
where e is the exponent of the group, which is the lowest common multiple of the
orders of elements in the group.

Example 15.9
Let Vα be as above. Then AnnF [X](Vα) = (f) where f is the minimal polynomial of
α.
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§15.6 Jordan normal form

Jordan normal form concerns matrix similarity in C. The following results are therefore
restricted to this particular field.

Lemma 15.6
The primes (or equivalently, irreducibles) in C[X] are the polynomials X − λ for
λ ∈ C, up to associates.

Proof. By the fundamental theorem of algebra, any non-constant polynomial with
complex coefficients has a complex root. By the Euclidean algorithm, we can show
that having a root λ is equivalent to having a linear factorX − λ. Hence the irredu-
cibles have degree one, and thus are X − λ exactly, up to associates.

Theorem 15.6 (Jordan Normal Form)
Let α : V → V be an endomorphism of a finite-dimensional C-vector space V .
Let Vα be the set V as a C[X]-module, where scalar multiplication is defined by
f · v = f(α)(v). Then, there exists an isomorphism of C[X]-modules

Vα
∼= C[X]⧸((X − λ1)n1) ⊕ · · · ⊕ C[X]⧸((X − λt)nt)

where λi ∈ C are not necessarily distinct. In particular, there exists a basis for this
vector space such that α has matrix in block diagonal form

Jn1(λ1)
Jn2(λ2)

. . .
Jnt(λt)


where each Jordan block Jni(λi) is an ni × ni matrix of the form

Jni(λi) =


λi 0 0 · · · 0
1 λi 0 · · · 0
0 1 λi · · · 0
...

...
... . . . ...

0 0 0 · · · λi



Proof. Note C[X] is a Euclidean domain using the degree function, and Vα is fi-
nitely generated as a C[X]-module by Lemma 15.5. These are the assumptions of
the primary decomposition theorem so we can apply it, finding the module decom-
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position as required, noting that the primes in C[X] are the linear polynomials as
in Lemma 15.6. Note that the free factor C[X] cannot appear in the decomposition
since V is finite-dimensional.

Wehave already seen that for amoduleWα
∼= F [X]⧸((X − λ)n), multiplication byX

is represented by thematrix Jn(λ)with respect to the basis 1, (X−λ), . . . , (X−λ)n−1.
Hence the result follows by considering the union of these bases.

Remark 43. 1. If α is represented by amatrixA, thenA is similar to a matrix in Jordan
normal form. This is the form of the result often used in linear algebra.

2. The Jordan blocks are uniquely determined up to reordering. This can be
proven by considering the dimensions of the generalised eigenspaces, which are
ker ((α− λ id)m) for somem ∈ N.

3. The minimal polynomial of α is ∏λ(X − λ)cλ where cλ is the size of the largest
λ-block.

4. The characteristic polynomial of α is∏λ(X−λ)aλ where aλ is the sum of the sizes
of the λ-blocks.

5. The number of λ-blocks is the dimension of the eigenspace of λ.

§15.7 Modules over principal ideal domains (non-examinable)

The structure theorem above was proven for Euclidean domains. This also holds for
principal ideal domains. Some of the ideas relevant to this proof are illustrated in this
subsection.

Theorem 15.7
Let R be a principal ideal domain. Then any finitely generated torsion-free
R-module is free.

If R is a Euclidean domain, this was proven as a corollary to the structure theorem,
Corollary 15.1.

Lemma 15.7
Let R be a principal ideal domain and M be an R-module. Let r1, r2 ∈ R be not
both zero, and let d be their greatest common divisor. Then,

1. there exists A ∈ SL2(R) such that

A

(
r1
r2

)
=
(
d
0

)
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2. if x1, x2 ∈ M , then there exist x′
1, x

′
2 ∈ M such that Rx1 + Rx2 = Rx′

1 + Rx′
2,

and r1x1 + r2x2 = dx′
1 + 0 · x′

2.

Proof. Since R is a principal ideal domain, (r1, r2) = (d). Hence, by definition, d =
αr1 + βr2 for some α, β ∈ R. Let r1 = s1d and r2 = s2d. Then αs1 + βs2 = 1. Now,
let

A =
(
α β

−s2 s1

)
=⇒ detA = 1; A

(
r1
r2

)
=
(
d
0

)

as required.

For the second part, let x′
1 = s1x1 + s2x2 and x′

2 = −βx1 + αx2. Then Rx′
1 +

Rx′
2 ⊆ Rx1 + Rx2. The matrix defining x′

1, x
′
2 in terms of x1, x2 is invertible since

its determinant is a unit; we can solve for x1, x2 in terms of x′
1, x

′
2. So Rx′

1 +Rx′
2 =

Rx1+Rx2. Then by direct computationwe can see that r1x2+r2x2 = dx′
1+0·x′

2.

The structure theorem for principal ideal domains follows the same method; it is de-
duced for Smith normal form. That theorem also holds for principal ideal domains.
The above lemma allows one to prove Smith normal form for principal ideal domains.
In a Euclidean domain, we used the Euclidean function for a notion of size in order to
perform induction; in a principal ideal domain we can count the irreducibles in a factor-
isation.

Proof of theorem. Let M = Rx1 + · · · + Rxn where n is minimal. If x1, . . . , xn are
independent, thenM is free as required. Suppose that the xi are not independent,
so there exists ri such that∑ rixi = 0 but not all of the ri are zero. By reordering, we
can suppose that r1 6= 0. By using part (ii) of the previous lemma, after replacing
x1 and x2 by suitable x′

1, x
′
2, we may assume that r1 6= 0 and r2 = 0. By repeating

this process with x1 and xi for all i ≥ 2, we obtain r1 6= 0 and r2 = · · · = rn = 0, so
r1x

′′
1 = 0 for some nonzero x′′

1 ∈ M . ButM is torsion-free, so r1 must be zero, and
this is a contradiction.
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